Research Report 2015 Project No: A-07/001

RISK RIDING BEHAVIORS AND INTERVENTIONAL APPROACHES AMONG YOUNG MOTORCYCLISTS IN BIG CITIES OF THAILAND

October 2015

RISK RIDING BEHAVIORS AND INTERVENTIONAL APPROACHES AMONG YOUNG MOTORCYCLISTS IN BIG CITIES OF THAILAND

902/1 9th Floor, Glas Haus Building, Soi Sukhumvit 25 (Daeng Prasert), Sukhumvit Road, Klongtoey-Nua, Wattana, Bangkok 10110, Thailand Tel. (66) 02-661-6248 FAX (66) 02-661-6249 http://www.atransociety.com (font style –arial)

> Copyright © Asian Transportation Research Society November, 2008 Printed in Thailand (font style –arial)

List of Members

Project Leader Police Lieutenant Colonel Dr. Waiphot Kulachai Department of Public Administration, Faculty of Political Science and Law, Burapha University, Chon Buri Thailand

Co-project Leader

Associate Professor Dr. Chulaporn Sota Department of Education, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand

Project Members

Police Colonel Chinda Klabklay Police Education Bureau, Royal Thai Police,

Bangkok, Thailand

Asst.Prof.Dr. Sittha Jaensirisak

Faculty of Engineering, Ubon-Ratchathani University Ubon-Ratchathani , Thailand

Asst.Prof. Dr. Thaned Satiennam

Faculty of Engineering, Khon Kaen University Khon Kaen, Thailand

Asst. Prof. Dr. Paramet Luathep

Faculty of Engineering , Prince of Songkla University Songkla , Thailand

Dr. Preda Pichayapan

Faculty of Engineering, Chiang Mai University Chiang Mai, Thailand

Mr. Patipol Homyamyen

Faculty of Business Administration and Information Technology Rajamangala University of Technology Suvarnabhumi ATRANS Research Report 2015

Advisors •

Dr. Tuenjai Fukuda

Senior Research Fellow, Department of Transportation Engineering and Socio-Technology, College of Science and Technology, Nihon University, Japan

Assoc. Prof.Dr. Chumnong Sorapipatana

King Mongkut University of Technology Thonburi Thailand

Dr. Vittaya Chartbunchachai (M.D.)

Khon Kaen Hospital Thailand ATRANS Research Report 2015

Abstract

ATRANS Research Report 2015

The research objectives are to (1) examine risky riding patterns of young riders (2) explore determinants behind risk riding behaviors among young people (3) test whether the developed model is fit to the empirical data and (4) give suggestions and recommendations for policy makers. The samples of this study were 3,191 young motorcyclists in 6 big cities in Thailand namely Bangkok, Chiangmai, Chonburi, Khonkaen, Songkla, and Ubon-Ratchathani. Questionnaire was employed to collect the data. The gathered data then were analyzed using structural equation modeling technique. Discussion on the findings as well as providing suggestions and recommendations for policy makers for policy makers will be also made in the latter part of this report.

Acknowledgements

This research granted by ATRANS is made possible through the help and support from everyone, including: project members, and participants who provided real facts and information. Especially, please allow me to dedicate my acknowledgment of gratitude toward the following significant advisors and contributors:

First and foremost, I would like to thank Dr. Tuenjai Fukuda for her substantial support and encouragement. She kindly read this paper and offered invaluable detailed advices on various aspects.

Second, I would like to thank Assoc. Prof.Dr. Chumnong Sorapipatana of KMUTT, and Dr. Vittaya Chartbunchachai of Khon Kaen Hospital who gave us valuable advices and suggestions.

Finally, I sincerely thank to ATRANS for granting this project.

Pol.Lt.Col. Dr. Waiphot Kulachai Project Leader

Assoc.Prof. Dr. Chulaporn Sota Co-project Leader ATRANS Research Report 2015

Table of Contents

ATRANS Research Report 2015

List of members Abstract	
Acknowledgement	IV
List of tables	VII
List of figures	VIII
Chapter 1	1
Introduction	1
Objectives	2
Scope of the research	2
Research questions	2
Hypothesis	2 2 3 3 3 4
Advantages of the research	3
Research streams	3
Timeframe	4
Project oversight	5
Terminology	5 2
Chapter 2	2
Theory of planned behavior (TPB)	6
Risky riding behaviors	7
Attitude toward risky riding behavior	8
Knowledge of traffic law and risky riding behaviors	8
Group influence and risky riding behavior	8
Traffic law enforcement and risky riding behavior	8
Road structure and risky riding behavior	9
Conceptual framework	9
Chapter 3	
Population	10
Sample	10
Sampling	10
Questionnaire	10
Validity	11
Reliability	11
Analysis	12
Chapter 4	10
Participants	13
Motorcycle ownership	13
Riding license ownership	14
Training	14
Riders' experience in accident	15
Reasons of using motorcycle	15
Violation of traffic law	16
Confirmatory factor analysis	16
SEM analysis	18
Hypothesis testing	21

	Research Report
23	2015
23	
24	
25	
28	
	23 24 25

ATRANS

List of Tables

Table		Page
1	Research streams	<u>ّ</u> 3
2	Timeframe	4
3	Reliability of each measure	12
4	Demographic information	13
5	Training	15
6	Riders' experience in accident	15
7	Reasons of using motorcycle	16
8	Violation of traffic law	16
9	The CFA Goodness-of-fit statistics	18
10	Comparison of goodness-of-fit measures between hypothesized SEM model and CFA model	19
11	Comparison of goodness-of-fit measures between hypothesized SEM model and revised SEM model	20
12	Hypothesis testing	21

ATRANS Research Report 2015

VII

List of Figures

1 2 3 4 5 6	Structure diagram of TPB Conceptual framework Motorcycle ownership Riding license ownership CFA analysis Standardized path estimates for the hypothesized SEM model	7 9 14 14 17 19
7	Standardized path estimates for the revised SEM model	21

CHAPTER I INTRODUCTION

Introduction

The World Health Organization (WHO) reported that road traffic accident caused 1.24 million fatalities worldwide accounting for 3,397 deaths per day (WHO, 2013, p. 4). It also reported that Thailand had the highest fatalities rate in ASEAN and ranked the third in the world (38.1deaths/100,000 populations). In addition, about 23 and 33 percent of deaths occur among motorcyclists worldwide and among motorcyclists in ASEAN countries respectively. According to Thailand, young people between 15-24 years of age had the highest fatality rate accounting for 32.70 deaths/100,000 populations (The National Statistics Office, 2014, p. 2).

Motorcycles are very popular mode of transport among young people in Thailand (Pitaktong et al., 2004, p. 232). During 2004-2014, the number of registered motorcycles has been increasing dramatically from 13,206,580 in 2004 to 20,141,213 in 2014 accounting for 34.43 percent (Department of Land Transport, 2015). Not surprisingly, the number of deaths from motorcycle-related accidents in Thailand is still very high. The study conducted by Namwat et al. in 2001 (as cited in Pitaktong et al., 2004, p. 233) found that about 74 percent of traffic injuries were related to motorcycle accidents. However, the Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health (2012, p. 481) reported that about 82.25 percent of injuries was caused by motorcycle-related accidents. It also reported that about 15.45 percent of deaths were riders who are between 15-19 years of age. This age group had the highest fatality rate compared to other age groups.

The road traffic fatalities among young people are caused by unprotected riding and alcohol drinking (Pitaktong et al., 2004, p. 234). Nayum (2008, p. 34) found that female are likely to hold negative attitudes on speeding compared to male. The study conducted by Banu et al. (2013, pp.4251-4252) also found similar results. Their study showed that aggressive riding behaviors were reported more often by men than women. Speeding and traffic law violation were the most prevalent risky behavior according to their study. Hongsranagon et al. (2008, p. 31) suggested that the main causes of traffic accidents among young people results from personal behavior, such as traffic law violation and drunk riding. Some young riders perform

1

risky riding due to positive emotions, for instances, pleasure, fun, and happiness. Hence, they enjoy risk-taking and speeding. The motives that associated with risky behaviors are experience-seeking, sensation-seeking, confidence/ familiarity, and underestimation of risk (Jevtic et al., 2012, p. 1139). Wong, Chung, and Huang (2010, p.280) suggested that personal traits play an important role on riding behavior. According to their study, personal traits were divided into three categories known as sensation seeking, amiability, and impatience. In additions, there are other determinants affecting risky riding behavior, such as riding confidence, affective risk perception, unawareness of traffic condition, utility perception, and attitude towards unsafe riding. They also defined risky riding behavior as fast riding and traffic violation.

We, therefore, are interested in doing a research on risky riding behaviors among young motorcyclists in some big cities of Thailand.

Objectives

The objectives of this study are as followings:

- 1. To examine risky riding patterns of young riders.
- 2. To explore determinants behind risk riding behaviors among young people.
- 3. To test whether the developed model is fit to the empirical data.
- 4. To give suggestions and recommendations for policy makers.

Scope of the research

The scope of this study focused on six big cities in Thailand namely, Bangkok, Chiang Mai, Chon Buri, Khon Kaen, Songkla, and Ubon-Ratchathani. It also emphasized on risky riding behaviors of young riders whose age is between 15-24 years old and be the residents of the given big cities. Furthermore, the theory of planned behavior (TPB) was the major theory employed in this study.

Research questions

1. What are the most important kinds of risky riding among young motorcyclists in big cities of Thailand?

2. What are the most important factors affecting risky riding behaviors among young motorcyclists in big cities of Thailand?

3. Is the developed model fit to the empirical data?

Research Hypothesis

H1: knowledge of traffic law has an influence on attitude toward behaviors

H2: knowledge of traffic law has an influence on behavioral intentions

2

- H3: knowledge of traffic law has an influence on risky riding behaviors
- H4: attitude toward behaviors has an influence on behavioral intentions
- H5: attitude toward behaviors has an influence on risky riding behaviors
- H6: traffic law enforcement has an influence on behavioral intentions
- H7: traffic law enforcement has an influence on risky riding behaviors
- H8: group influence has an influence on behavioral intentions
- H9: group influence has an influence on risky riding behaviors
- H10: road structure has an influence on behavioral intentions
- H11: road structure has an influence on risky riding behaviors
- H12: behavioral intentions has an influence on risky riding behaviors

Advantages of the research

1. Agencies responsible for road safety promotion can apply the findings yielded from this study as academic references to support their decision making in any related road safety project.

2. Policy makers can employ the findings from this study to support their initiatives on road safety policy of not only provincial, regional, and national levels.

3. Scholars, students, and general researchers can use the findings from this study to

Research streams

A short summary of each research streams is illustrated in Table 1.

tream	Description	Responsible person	Main support
	Review of literature	Pol.Lt.Col. Dr. Waiphot	Pol.Col.Chinda
			Mr. Patipol
	Construction of	All members	Dr. Tuenjai
	questionnaire		Assoc.Prof.Dr.
	•		Chumnong

 Table 1
 Research streams

Table 1 (Con't)

Stream	Description	Responsible person	Main support

3

3	Questionnaire validation	All members	Dr. Tuenjai
			Assoc.Prof.Dr.
			Chumnong
			Dr. Vittaya
4	Data collection	All members	Advisors
5	Data analysis	Pol.Lt.Col. Dr. Waiphot	Mr. Patipol
			Pol.Col.Chinda
6 Roundtable discussion and	All members	Dr. Tuenjai	
	workshop		Assoc.Prof.Dr.
			Chumnong
			Dr. Vittaya
7	Preparation of reports	All members	Dr. Tuenjai
			Assoc.Prof.Dr.
			Chumnong
			Dr. Vittaya

Timeframe

The timeframe of this research is scheduled as illustrated in Table 2.

Table 2 Timeframe

Activities	Month											
ACTIVITIES		2	3	4	5	6	7	8	9	10	11	12
Review of literature	X											
Inception report submission	X											
Questionnaire Validation		Х										
Progress report			Х									
Data collection				Х	Х							
Data analysis						Χ						
Interim report presentation &							Х					
submission												
Roundtable discussion &								Χ				
workshop												
Final report presentation &									Х			
comments												
Final report preparation &										Х	Х	Х
submission												

Project oversight

The project oversight component of this research has been designed to track and provide guidance, comments, and recommendations at key stages of the project from different perspectives.

1. Project advisors – three advisors are assigned to provide independent assessment and review of major outputs. Then, they responsible for giving comments and recommendations on technical excellence and relevance.

2. Consultative forum – to ensure the relevance and completeness of the findings, this forum or roundtable discussion will be held in order to gain comments and recommendations from various perspectives.

Terminology

1. Attitude toward behavior refers to the degree to which an individual has a favorable or unfavorable evaluation or appraisal of the behavior in question.

2. Behavioral intention refers to an ability of an individual to decide at will to perform or not perform the behavior.

3. Group influence refers to a social pressure by members of one's group to take a certain action, adopt certain values, or otherwise conform in order to be accepted by other members.

4. Knowledge of traffic law refers to the extent to which the motorcyclists know about traffic law.

5. Risky riding behaviors refers to rider intentions and behavior that may lead to fatal or serious injury crash involvement for the motorcyclist, their passenger, or other road users.

6. Road structure refers to a condition of road physically obstructs riding motorcycle and lead to traffic law violation.

7. Traffic law enforcement refers to the extent to which motorcyclists perceive about how restriction of detection of a violation through to the penalty.

CHAPTER 2 REVIEW OF LITERATURE

5

This chapter consists of seven topics namely, theory of planned behavior (TPB), risky riding behavior, attitude toward risky riding behavior, linkage between knowledge of traffic law, group influence, traffic law enforcement, and road structure and risky riding behaviors.

Theory of planned behavior (TPB)

Ajzen (1991, p. 181) claimed that the theory of planned behavior (TPB) is an extension of the theory of reasoned action initiated by Ajzen and Fishbein in 1980. This theory stated that one's behavior is influenced by his/her intention. The most likely the stronger intention, the more likely the behavior he/she will perform.

The theory also explained that the perceived behavioral control can be used directly to predict the behavioral intentional and behavioral achievement. The perceived behavioral control has similar meaning with self-efficacy of Bandura (1982, p. 122). He defined the term as "is concerned with judgments of how well one can execute courses of action required to deal with prospective situations." Hence, it can be concluded that people's behavior is strongly influenced by their confidence in their ability to perform such behaviors.

The theory of planned behavior also explained three antecedents of intention which are attitudes toward behaviors, subjective norm, and perceived behavioral control. The attitude toward behavior means the degree to which an individual has a favorable or unfavorable evaluation or appraisal of the behavior in question. Subjective norm which is a social factor can be defined as a perceived social pressure for an individual to perform or not to perform the behavior. The perceived behavioral control refers to the perceived ease or difficulty of performing the behavior and it is assumed to reflect past experience of an individual. Hence, the stronger the attitude toward behavior, subjective norm, and perceived behavioral control, the stronger intention an individual will perform a behavior. For ease understanding, the structural diagram of this theory is depicted in Figure 1 as follow:

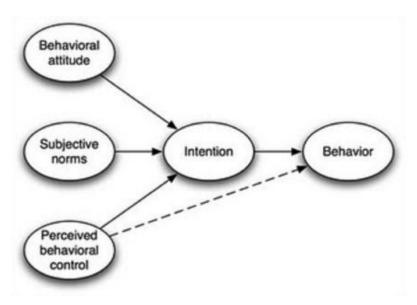


Figure 1 Structure diagram of TPB Source: Ajzen (1991)

Risky riding behavior

Watson et al. (2007, p1) defined risky riding behavior as rider intentions and behavior that may lead to fatal or serious injured crash involvement for the motorcyclist, their passenger, or other road users. Suangka (2016, pp. 13-14) gave a very short definition of risky riding behaviors. She defined the behaviors as an action of driver or rider that lead to fatal and injured traffic accidents. She also provided various kinds of risky riding behaviors as follows:

- 1. Not wearing helmet while riding
- 2. Drunk riding
- 3. riding over the speed limit
- 4. Inexperienced riding
- 5. Sudden overtaking
- 6. Sudden braking
- 7. Riding while ability impaired

According to Watson et al. (2007, pp. 67-68), there are six themes of safe and risky riding behavior as followings;

- 1. Handling skills
- 2. Concentration and focus
- 3. Road rules
- 4. Impairment
- 5. Pushing your limits
- 6. Stunts/extreme speed.

Attitude toward risky riding behavior

Attitude toward risky riding behavior is involved with the nature of pro and con evaluation of an individual. The behavioral intention he/she will perform is associated with the perceived consequence of the behavior. For example, if an individual perceives that speeding will provide him/her a positive outcome, he/she may intend to perform such behavior. A study by Forward (2009) found that driver who violated the law perceived driving over the speed limit will give them pleasant results; arriving at the destination quicker, and getting more excitement. A study by Elliot (2010) who adopted an extended version of the TPB to examine motorcyclists' intentions to speed on urban roads and motorways found that attitude is an important factor predicting motorcyclists' intentions. Hence, they in turn will perform risky riding behavior. The study of Fergusson, Swain-Campbell, and Horwood (2003) also confirmed that young people are more likely to perform risky riding than older people.

Knowledge of traffic law and risky riding behavior

The study by Waiyanate (2010) found that more than 70 percent of young riders had not been officially trained in school about traffic law, rules, regulation, and safety riding. Hence, training after they had more experience in riding motorcycle could not give positive impact on their riding behavior. The result of her study indicated that riders having training from driving school had lower rate of traffic law violation than those who did not.

Group influence and risky riding behavior

Group or peer plays an important role in risky riding behavior among young people. It can be defined as a social pressure by members of one's group to take a certain action, adopt certain values, or otherwise conform in order to be accepted by other members (Dictionary.com website, 2017). Sela-Shayovitz (2008) stated that the influence of peer pressure on behavior is particularly strong. The study by Møller and Haustein (2014) showed that peer pressure contributed to increased speeding behavior of young people. However, peer pressure did not affected riding behavior of people of 28 years old.

Traffic law enforcement and risky riding behavior

Suangka (2016, p. 9) stated that non rigid law enforcement enhance road users to drive and ride carelessly and illegally. The study by (Waiyanate, 2010, p. 13) found

that about 87.88 percent of young riders always violate traffic law when there is no presence of traffic police. Traffic law enforcement can affect riding behavior of motorcyclists in various degrees. Mäkinen et al. (2003, p. 40) concluded that traffic law enforcement against speeding provided fair effects on rider behavior. The speed will decrease prior to approaching the surveillance point and it start increasing again after passing the point. According to enforcement against drunk driving, the study by Mäkinen and Veijalainen (1997) showed that about 40 percent of drivers are tested annually in Finland. In addition, the number of caught driver has fallen during the past 10 years. This can be implied that traffic law enforcement will have negative effect on performing risky riding behavior.

Road structure and risky riding behavior

Road structure refers to a condition of road physically obstructs riding motorcycle and lead to traffic law violation and accidents. For instances, width of traffic lane, barriers, rough road surface, and under-construction road (Suangka, 2016, p.8). Road surface not only leads to violation but also traffic accidents. Haworth (1999, p.3) found that the condition of the road; lack of visibility or obstructions, unclean road or loose material, poor road markings and horizontal curvature contributed to about 15 percent of road traffic accidents in Australia.

Conceptual framework

According to the review of literature, the conceptual framework is proposed as follow;

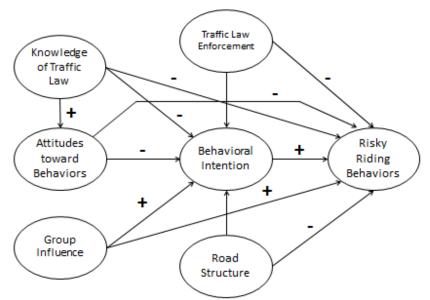


Figure 2 Conceptual framework

Population

The population of this study is young people living in six big cities of Thailand, namely Bangkok, Chon Buri, Khon Kaen, Ubon Ratchathani, Chiang Mai, and Songkla accounting for 1,971,525 persons.

Sample

The samples of this study are young people who are at the age cohort of 15-24 according to the United Nations (UN) definition. They are residents in six big cities in Thailand; Bangkok, Chon Buri, Khon Kaen, Ubon Ratchathani, Chiang Mai, and Songkla. At least 500 samples from each city will be studied.

Sampling

According to this study, nonprobability sampling method will be employed. In this sampling method, we have no objective way of evaluating how far away from the population parameter our estimate may be. The drawback of this method is that, when we do not select our sample randomly out of the entire population of interest, our sampling results may be biased. In addition, the sample may not be a true representative of the population of interest. However, it is well suited for exploratory research intended to generate new ideas that will be systematically tested later (Salant & Dillman, 1994, p.64). Furthermore, it can save time and budget to collect data from the sample.

Questionnaire

Questionnaire will be employed to collect primary data from the samples. The questionnaire is divided into 8 parts;

- 1) Demographic data
- 2) Knowledge of traffic law
- 3) Attitude toward behaviors
- 4) Traffic law enforcement
- 5) Group influence
- 6) Road structure
- 7) Behavioral intentions
- 8) Risky riding behaviors

Validity

Each item will be assessed by transportation experts giving the item rating of 1 for clearly measuring, -1 for clearly not measuring, and 0 for unclear measuring. Finally, the index of item – objective congruence (IOC) will be calculated using the formula developed by Rovinelli and Hambleton (as cited in Kotchapong, 2008) for each item of the questionnaire. According to Rovinelli and Hambleton (as cited in Kotchapong, 2008), IOC value I_{ik} for *i*-th item on *k*-th objective is an average of rating for each combination of each item and objective, and IOC is defined as follows:

$$I_{ik} = \frac{1}{N} \sum_{j=1}^{N} S_{ijk}, i = 1, \dots, M, k = 1, \dots, K,$$

where S_{ijk} = the rating of (-1, 0, 1) of *i*-th item as measure of *k*-th

objective by j-th specialist

M = total number of items

N = the number of specialists

K = the number of objectives

Prasitrattasin (2007) suggested that the IOC index higher than .50 is determined as valid. Hence, any item with IOC index lower than .50 will be deleted or the statements will be revised in accordance with the recommendations of the experts.

Reliability

After all items of the questionnaire are validated, the questionnaires will be revised and then sent approximately 30 samples as a pilot survey. Then, the reliability of each measurement, measure of internal consistency, will be examined employing Cronbach's alpha coefficient (Cronbach, 1951). For this research, the Cronbach's Alpha coefficient for k-th object is defined as follows:

$$\alpha_{k} = \frac{M_{k}}{1 - M_{k}} \left(1 - \frac{\sum_{i=1}^{M_{k}} \sigma^{2}(Y_{i})}{\sigma_{k}^{2}} \right),$$

where

 M_k = the number of items in *k*-th objective $\sigma^2(Y_i)$ = variance of rating of *i*-th item on *k*-th object σ^2_k = ni (sgnitar) etisopmoc latot fo ecnairav *k*-th object George and Marry (as cited in Gliem & Gliem, 2003) suggested that the Cronbach's alpha coefficient >.90 - Exccellent, >.80 - Good, >.70 - Acceptable, >.60 - Questionable, >.50 - Poor, and <.50 - Unacceptable. The result of reliability analysis is illustrated in Table 3.

Measure	Items	α
Knowledge of traffic law	7	.861
Attitude toward behaviors	10	.957
Traffic law enforcement	3	.855
Group influence	4	.902
Road structure	4	.800
Behavioral intentions	10	.829
Risky riding behaviors	10	.944

Table 3 Reliability of each measure

Analysis

The primary data will be collected using questionnaires as a research tool. Welltrained research assistants are assigned to collect data in October 2015. Then, descriptive statistics such as frequency, percentage, mean, median, and standard deviation (SD) will be applied in data analysis. In addition, confirmatory factor analysis (CFA) will be employed in order to test the construct validity of each measurement model. Finally, structural equation modeling (SEM) technique using statistical software will be employed to examine relationship between each variable.

CHAPTER 4 RESULTS

The majority of participants were male accounting for 60.3 percent. Most of them were pursuing/having bachelor degree (56.3%). About 57.4 percent of the participants lived with parents. The majority of the participants had parents living together. Interestingly, about 16 percent of them were living alone as illustrated in Table 4.

Demographic details	Frequency	Percentage
Sex		
- Male	1,923	60.3
- Female	1,268	39.7
Educational background		
- High school or lower	751	23.1
- Vocational/High vocational	638	20.0
School		
- Bachelor degree	1,816	56.3
Living		
- With parents	1,833	57.4
- With relatives	229	7.2
- With friends	546	17.1
- Alone	512	16.0
- Others	71	2.2
Marital status of parents		
- Living together	2,460	72.1
- Separated	282	8.8
- Divorced	239	7.5
- Single mom/Dad	210	6.6

Table 4 Demographic information

Motorcycle ownership

When asking about motorcycle ownership, 2,165 participants (67.8%) reported having their own motorcycles as showed in Figure 3.

ATRANS Research Report

2015

Figure 3 Motorcycle ownership

Riding license ownership

The majority of participants (56%) had riding license. This data showed indicated that some riders had no license even they own motorcycles. This can be implied that some people ride motorcycle without riding license (see Figure 4).

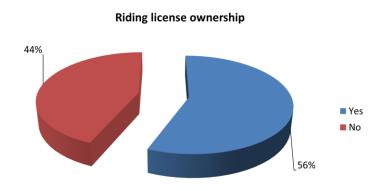


Figure 4 Riding license ownership

Training

When asking participants about practice riding motorcycle, most of them (43.6%) reported that they practiced riding on their own. About 41.6 percent reported having been trained by their parents. There were only 7.8 percent of participants who were able to ride had training in driving/riding schools as showed in Table 5. This indicated that most of them were not qualified to ride on the road safely even they had the riding license issued by the Department of Land Transport.

Table 5 Training

Rank	Type of training	Percentage
1	Self-practice	43.6
2	Parents	41.6
3	Relatives	17.4
4	Friends	14.6
5	Driving/Riding school	7.8
6	Others	3.4

Riders' experience in accident

Most participants (58.3%) reported having experience in road traffic accidents in the past five years. About 47.1 percent of them reported having accidents 1-3 times. In addition, 42.5 percent reported having slightly injury and 3.8 percent reported having serious injury (see Table 6).

Details	Frequency	Percentage					
Experiencing accident							
- Yes	1,859	58.3					
- No	1,332	41.7					
Frequency of accidents in the							
past 5 year							
- None	478	15.0					
- 1-3	1,504	47.1					
- 4-6	259	8.1					
- 7-10	47	1.5					
- >10	49	1.5					
Consequences of accident							
- Non-injured	381	11.9					
- Slightly injured	1,356	42.5					
- Serious injured	122	3.8					

Table 6 Riders' experience in accident

Reasons of using motorcycle

The majority of participants (87.5%) reported that the main reason for riding motorcycle is convenience. Reaching the destination very quick is another important reason for them to ride on motorcycle (see Table 7).

Table 7 Reasons of using motorcycle

Rank	Reason	Frequency	Percentage	
1	Convenience	2,793		87.5
2	Reaching destination quicker	2,421		75.9
3	Economic reason	1,330		41.7
4	Challenging	599		18.8
5	Safety	425		13.3
6	No other modes	351		11.0
7	Others	73		2.3

Violation of traffic law

Participants were asked whether they used to violate the traffic law. The majority of them (73.6) reported not wearing helmet while riding (see Table 8).

Rank	Offence	Frequency	Percentage	
1	Not wearing helmet	2,350		73.6
2	No riding license	1,547		48.5
3	Riding against the traffic flow	1,393		43.7
4	Red light running	1,288		40.4
5	Using mobile phone while riding	1,110		34.8
6	Speeding	805		25.2
7	Riding on footpath	631		19.8
8	Following to close	588		18.4
9	Drunk riding	576		18.1
10	Others	132		4.1

Table 8 Violation of traffic law

Confirmatory factor analysis

As a preliminary step, confirmatory factor analysis (CFA) was conducted to test the validity of the measurement models. This is a comparison between theoretical measurement models against reality, the empirical data. Hence, the overall model fit and construct validity were examined according to Hair et al. (2014). Figure 5 illustrated the result of CFA and overall fit details are detailed in Table 9.

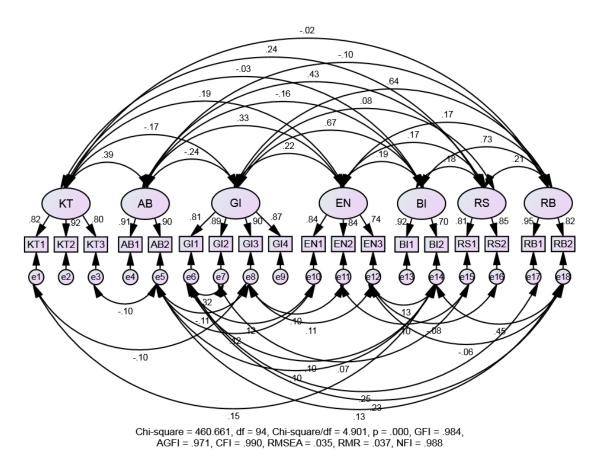
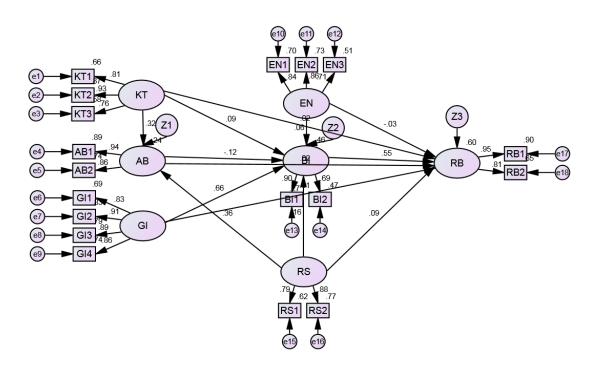


Figure 5 CFA analysis

Table 9 includes selected fit statistic from the CFA output. The overall model chisquare is 460.661 with 94 degree of freedom. The *p*-value associated with the result is .000. This *p*-value is significant using the Type 1 error rate .05. Thus, the chisquare goodness of fit statistic does not indicate that the observed covariance matrix matches the estimated covariance matrix within sampling variance. However, this study has the sample size of 3,191. The significant *p*-value is expected according to Hair et al. (2014). The value of RMSEA, an absolute fit index, is .035. This value indicates additional support for model fit. The normed Chi-square is 4.901 is considered acceptable fit for the CFA model. According to the incremental fit indices, the CFI has a value of .990 which exceeds the suggested cutoff values. In addition, the AGFI has the value of .971 which reflects moderate model fit.

Table 9 The CFA Goodness-of-fit statistics


Goodness-of-fit statistics	Acceptable	Results
	values	
Chi-square	Significant p-	Chi-square = 460.661
	value expected	Degree of freedom = 94
		<i>p</i> -value = .000
Absolute fit measures		
Goodness-of-fit index (GFI)	>.90	.984
Root mean square error of	<.07	.035
approximation (RMSEA)		
Root mean square residual (RMR)	Low	.037
Normed Chi-square	Between 2 and 5	4.901
Incremental fit indices		
Normed fit index (NFI)	Approach to 1.0	.988
Comparative fit index (CFI)	Above .92	.990
Relative fit index (RFI)	Approach to 1.0	.980
Parsimony fit indices		
Adjusted goodness-of-fit index	Approach to 1.0	.971
(AGFI)		
Parsimony normed fit index	Approach to 1.0	.607
(PNFI)		
Source: Hair et al. (2014)		

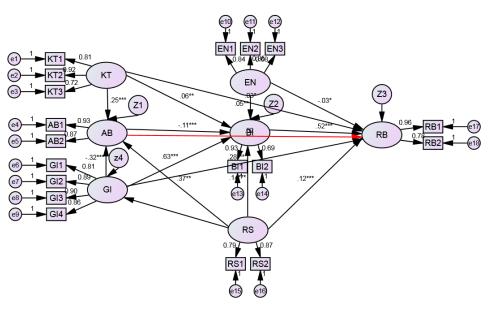
SEM Analysis

According to SEM analysis, all exogenous latent variables were allowed to covary in the hypothesized model (Kline, 2005). Hence, the full SEM model including all indicators was tested. The fit indices of initial SEM test for the hypothesized model are presented in Table 10. The information in Table 10 shows the overall fit statistics from testing the hypothesized model. The chi-square is 2716.588 with 133 degree of freedom (p < .05), and the normed chi-square is 20.425. The model CFI is .930 with RMSEA of .078. All of these measures are not in a range that would be associated with good fit. These suggest that the model provides overall poor fit. The standardized path coefficients are illustrated in Figure 6.

Table 10Comparison of goodness-of-fit measures between hypothesized SEMmodel and CFA model

Goodness-of-fit statistics	SEM model	CFA mode
Absolute fit measures		
Chi-square	2716.588	460.661
Degree of freedom	133	94
<i>p</i> -value	.000	.000
GFI	.913	.984
RMSEA	.078	.035
RMR	.134	.037
Normed Chi-square	20.425	4.901
Incremental fit indices		
NFI	.927	.988
CFI	.930	.990
RFI	.916	.980
Parsimony fit indices		
AGFI	.889	.971
PNFI	.806	.607

Chi-square = 2716.588, df = 133, Chi-square/df = 20.425, p = .000, GFI = .913, AGFI = .889, CFI = .930, RMSEA = .078, RMR = .134, NFI = .927



Based on the residuals and modification indices information from the initial SEM model, we conducted the post hoc analysis adding a direct relationship between GI and AB, and allowing covary between error of each observed variable. Then, the model was re-estimated. The model fit statistics are shown in Table 11 and Figure 7.

Goodness-of-fit statistics	SEM model	Revised SEM model
Absolute fit measures		
Chi-square	2716.588	444.509
Degree of freedom	133	105
<i>p</i> -value	.000	.000
GFI	.913	.984
RMSEA	.078	.032
RMR	.134	.026
Normed Chi-square	20.425	4.233
Incremental fit indices		
NFI	.927	.988
CFI	.930	.991
RFI	.916	.983
Parsimony fit indices		
AGFI	.889	.973
PNFI	.806	.678

Table 11	Comparison of goodness-of-fit measures between hypothesized SEM
model an	d revised SEM model

Table 11 shows the overall fit statistics from testing the revised model. The chisquare is 444.509 with 105 degree of freedom (p < .05), and the normed chi-square is 4.233. The model CFI is .991 with RMSEA of .032. All of these measures are within a range that would be associated with good fit. These suggest that the model provides overall good fit. The overall model fit changed very little from the hypothesized model. The standardized path coefficients are illustrated in Figure 7.

Chi-square =444.509, df = 105, Chi-square/df = 4.233, p = .000, GFI = .984, AGFI = .973, CFI = .991, RMSEA = .032, RMR = .026, NFI = .988, RFI = .983, PNFI = .678

Figure 7 Standardized path estimates for the revised SEM model

When considering the most influential factor on risky riding behaviors, group influence (GI) is ranked the first with total effect of .62. The other influential factors are behavioral intention (BI), road structure (RS), knowledge of traffic law (KT), and traffic law enforcement (EN) with the total effects of .52, .16, .05, and -.03 respectively.

Hypothesis Testing

According to the SEM analysis, the revised model is fit with the empirical data. The relationships between each variable are illustrated in Figure 7. The results of hypothesis testing are as illustrated in Table 12.

Table	12	Hypothesis	testing
-------	----	------------	---------

Н	Description	Result
H1	knowledge of traffic law has an influence on attitude toward behaviors	Supported
H2	knowledge of traffic law has an influence on behavioral intentions	Supported
H3	knowledge of traffic law has an influence on risky riding behaviors	Supported
H4	attitude toward behaviors has an influence on behavioral intentions	Supported

Table 12 (Con't)

Н	Description	Result
H5	attitude toward behaviors has an influence on risky	Not-supported
	riding behaviors	
H6	traffic law enforcement has an influence on	Supported
	behavioral intentions	
H7	traffic law enforcement has an influence on risky	Supported
	riding behaviors	
H8	group influence has an influence on behavioral	Supported
	intentions	
H9	group influence has an influence on risky riding	Supported
	behaviors	
H10	road structure has an influence on behavioral	Supported
	intentions	
H11	road structure has an influence on risky riding	Supported
	behaviors	
H12	behavioral intentions has an influence on risky	Supported
	riding behaviors	

The study also found that road structure has an effect on group influence. In addition, group influence also had an effect on attitude toward riding behavior. The results of the study will be discussed in Chapter 5.

ATRANS Research Report 2015

CHAPTER 5 CONCLUSION. DISCUSSION, AND SUGGESTIONS

Conclusion

Motorcycles are very popular mode of transport among young people and the number of deaths from motorcycle-related accidents is still very high in Thailand. Young people with the age of 15-19 years of age had the highest fatality rate compared to other age groups. Risky riding behavior is one of the most important factors leading to road traffic accidents among young motorcyclists. Hence, this research aimed to (1) examine risky riding patterns of young riders (2) explore determinants behind risk riding behaviors among young people (3) test whether the developed model is fit to the empirical data and (4) give suggestions and recommendations for policy makers. There were 3,191 young motorcyclists in 6 big cities in Thailand namely Bangkok, Chiangmai, Chonburi, Khonkaen, Songkla, and Ubon-Ratchathani, participating in the survey. Questionnaire was employed to collect the data. The gathered data then were analyzed using structural equation modeling technique.

For descriptive analysis, the majority of them were male. Most of them were pursuing/having bachelor degree. About 57.4 percent of the participants lived with parents. The majority of the participants had parents living together. Interestingly, and about 16 percent of them were living alone. Most of their parents live together accounting for 72.1 percent. More than 67 of the participants reported having their own motorcycles. However, only 56 percent had riding license. Most of them practiced riding on their own and some trained by their parents. Only 7.8 percent of the participants had trained in driving school. Approximately 58 percent used to have road traffic accident. About 47 percent had 1-3 accidents in the previous year and 42.5 percent of them reported having slightly injury. The major reason of riding motorcycle was its convenience accounting for 87.5 percent. They sometimes violated the traffic law, especially not wearing helmet while riding (73.6%).

Discussion

This study found that knowledge of traffic law has an influence on attitude toward behaviors, behavioral intentions, and risky riding behaviors. This can be implied that when young motorcyclists have enough knowledge of traffic law, they will have positive attitude toward safety riding and less intention to perform risky riding behavior. This finding was consistent with the study of Waiyanate (2010) who found that young people having been trained about traffic law are less likely to perform traffic violation.

Attitude toward risky riding behaviors had negative influence on behavioral intentions. However, it had no influence on risky riding behaviors. This finding was not consistent with previous research (Elliot, 2010). According to traffic law enforcement, it had positive impact on behavioral intentions but had negative impact on risky riding behaviors. These were consistent with previous findings (Suangka, 2016; Waiyanate, 2010, Mäkinen et al., 2003; Mäkinen & Veijalainen, 1997).

This study also found that group influence had positive impact on behavioral intention and risky riding behaviors. These supported the findings of previous researches (Sela-Shayovitz, 2008; Møller & Haustein, 2014). In addition, road structure also had impact on behavioral intentions and risky riding behaviors. Physical condition of road such as width of traffic lane, barriers, rough road surface, and under-construction road will obstruct riding motorcycle (Suangka, 2016) leading to traffic law violation and road traffic accidents (Haworth, 1999).

Suggestions

This study found that group influence is the most influential factor leading to risky riding behaviors. Most of young motorcyclists may perform risky riding behaviors since they are forced by their group members. Some of them may perform these behaviors because they want to be accepted by the group members. Providing them more training on safe riding and traffic law will enhance them to have positive attitude on safe riding. When they get more knowledge on traffic law and safe riding, they will have less intention to perform risky riding behaviors. However, provided training and activities should be group based activities by letting them to learn and share experiences in their groups. Road structure is also important factor leading to traffic violation among young motorcyclists. Related agencies responsible for road construction should design pavement, footpath and u-turn which do not obstruct riding. Road safety audit should be performed to correct hazard spot along roadways. Regular monitoring of road surface should be conducted so some obstruction can be detected and then improved. Police should perform more rigid traffic law enforcement since the finding shows that it has negative impact on risky riding behaviors. This means the more rigid traffic law enforcements, the less likely young motorcyclists will perform risky riding behaviors.

References

- Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision processes, 50(2), pp. 179-211.
- Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), pp. 122-147.
- Banu, H., Chakrabarty, N., Michael, R.J., Kumar, R., Sudhir, P.M., Sharma, M.K., & Mehrotra, S. (2013). Two-wheeler riding patterns, perceptions and aggressive riding behavior among college youth. International Journal of Innovation Research in Science, Engineering and Technology, 2(9), pp. 4250-4256.
- The Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health. (2012). Severe injuries related to motorcycle accident in Thailand, 2012. Weekly Epidemiological Surveillance Report, 44(31), pp. 481-484.
- Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
- Department of Land Transport. (2015). Registered vehicle statistics. Retrieved 2 March 2015 from http://www.dlt.go.th
- Elliott, M.A. (2010). Predicting motorcyclists' intentions to speed: effects of selectedcognitions from the Theory of Planned Behaviour, self-identity and social identity. Accident Analysis and Prevention, 42, pp. 718-725.
- Fergusson, D., Swain-Campbell, N., Horwood, J. (2003). Risky driving behaviour in young people: prevalence, personal characteristics and traffic accidents. Australian and New Zealand Journal of Public Health, 27, pp. 337-342.
- Forward, S. (2009). An assessment of what motivates road violation. Transportation Research Part F: Traffic Psychology and Behaviour, 9(12), pp. 225-234.
- Gliem, J.A., & Gliem, R.R. (2003, October 8-10). Calculating, interpreting, and reporting Cronbach's alpha reliability coefficient for Likert-type scales. Paper presented at the Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education, The Ohio State University, Columbus, OH. Retrieved June 8, 2012, from https://scholarworks.iupui.edu/bitstream/ handle/1805/344/Gliem+&+Gliem.pdf?sequence=1
- Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2014). Multivariate data analysis (7th ed.). Essex, UK: Pearson Education Limited.
- Haworth, N. (1999). Road factors in motorcycle crashes. Presentation to Victorian Motorcycle Advisory Council Workshop on "motorcycling and the road environment" held at VicRoads.
- Kew, 8 June 1999). Clayton, Victoria: Monash University Accident Research Centre.

- Hongsranagon, P., Khompratya, T., Hongpukdee, S., Havanond, P., & Deelertyuenyong, N. (2011). Traffic risk behavior and perceptions of Thai motorcyclists: A case study. International Association of Traffic and Safety Science, 35(2011), pp. 30-33.
- Jevtic, V., Vujanic, M., Lipovac, K., Jovanovic, D., & Stanojevic, P. (2012). The influence of motives on risky behavior in traffic: Comparison between motorcyclists and passenger car drivers. Scientific Research and Essays, 7(10), pp. 1134-1140.
- Kotchapong, T. (2008). The effect of social entrepreneur characteristics, principles of good governance and fair trade principles on social enterprise performance of the Thaicraft fair trade producer groups. (Unpublished master thesis). University of the Thai Chamber of Commerce, Bangkok.
- Mäkinen, T. & Veijalainen, T. (1997). Drunk driving reduced by half in Finland. In (Preprint):International conference: Traffic Safety on Two Continents. Lisbon Portugal 22–24 September, 1997. 23/9 Traffic Safety.
- Mäkinen, T., et al. (2003). Traffic enforcement in Europe: effects, measures, needs and future. Final report of the ESCAPE consortium.
- Møller, M., & Haustein, S. (2014). Peer influence on speeding behaviour among male drivers aged 18 and 28. Accident Analysis and Prevention, 64(2014), pp. 92-99.
- The National Statistics Office. (2014). Accident: loss beyond one life. Retrieved 2 March 2015 from http://www.nic.go.th/gsic/e-book/accident/ accident.pdf
- Nayum, A. (2008). The role of personality and attitudes in predicting risky driving behavior. Unpublished master thesis, University of Oslo.
- Peer pressure. (n.d.). Dictionary.com Unabridged. Retrieved April 14, 2017 from Dictionary.com website http://www.dictionary.com/browse/peer-pressure
- Pitaktong, U., Manopaiboon, C., Kilmarx, P., Jeeyapant, S., Jenkins, R., Tappero, J., Uthaivoravit, W., & Griensven, F. (2004). Motorcycle helmet use and related risk behaviors among adolescents and young adults in northern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 35(1), pp. 232-241.
- Prasitrattasin, S. (2007). Social science research methodology (14th ed.). Bangkok, Samlada. [In Thai]
- Salant, P., & Dillman, D.A. (1994). How to conduct your own survey. Toronto: John Wiley & Sons, Inc.

- Sela-Shayovitz, R., 2008. Young drivers' perceptions of peer pressure, driving under the influence of alcohol and drugs, and involvement in road accidents. Criminal Justice Studies: A Critical Journal of Crime, Law and Society, 21, pp. 3–14.
- Suangka, K. (2016). A study of young driver behavior that affect the risk of accidents from the motorcycle. Nakhon Ratchasima: Suranaree University of Technology.
- Waiyanate, N. (2010). Exploring background of getting driving license, youth driving test and related organizations: A case study of academic institutions in Phitsanulok. Bangkok: Road Safety Policy Foundation.
- Watson, B., Tunnicliff, D., White, K., Schonfeld, C., & Wishart, D. (2007).
 Psychological and social factors influencing motorcycle rider intentions and behavior. Canberra: Australian Transport Safety Bureau.
- World Health Organization. (2013). Global status report on road safety 2013. Luxemburg: World Health Organization.

APPENDIX

SEM Analysis

D:\1. RESEARCH\1. ATRANS RESEARCH\2015\1. FINAL ANALYSIS\SEM
FINAL/SEM2ND.amw
Analysis Summary
Date and Time
Date: 18 พฤษภาคม 2560
Time: 21:45:16
Title
Sem2nd: 18 พฤษภาคม 2560 21:45
Groups
Group number 1 (Group number 1)
Notes for Group (Group number 1)
The model is recursive.
Sample size = 3191
Variable Summary (Group number 1)
Your model contains the following variables (Group number 1)
Observed, endogenous variables
TKN3
TKN2
TKN1
ATT2
ATT1
GINF4
GINF3
GINF2 GINF1
LENF1
LENF2
LENF3
BIN2
BIN1
RSTR2
RSTR1
RRB1
RRB2
Unobserved, endogenous variables
AB
BI
RB
Unobserved, exogenous variables
KT e3
e2
e1
e5
e4
GI
e9
e8
e7
e6

e10 e11 e12 e14 e13 RS e16 e15 e17 e18

ΕN

e18 Z1

Z2

Z3

Variable counts (Group number 1)

Number of variables in your model:46

Number of observed variables: 18

Number of unobserved variables: 28

Number of exogenous variables: 25

Number of endogenous variables: 21

Parameter Summary (Group number 1)

	WeightsCova	ariancesVaria	ancesMe	eansInte	erceptsT	otal
Fixed	39	0	0	0	0	39
Labeled	0	0	0	0	0	0
Unlabeled	14	27	25	0	0	66
Total	53	27	25	0	0	105

Models

Default model (Default model)

Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments:171 Number of distinct parameters to be estimated: 66

Degrees of freedom (171 - 66):105

Result (Default model)

Minimum was achieved Chi-square = 444.509 Degrees of freedom = 105 Probability level = .000 Group number 1 (Group number 1 - Default model) Estimates (Group number 1 - Default model) Scalar Estimates (Group number 1 - Default model) Maximum Likelihood Estimates Regression Weights: (Group number 1 - Default model)

		Estimate	SF	CR	P	Label
AB	< KT			6.238	***	
AB	< RS			2.733	.006	
AB	< GI			-4.193	***	
BI	< EN			2.666	.008	
BI	< RS			6.930	***	
BI	< KT			3.109	.002	
BI	< AB	105	.020	-5.255	***	
BI	< GI	.548	.016	34.553	***	
RB	< EN	030	.015	-1.984	.047	
RB	< Bl	.560	.024	22.876	***	
RB	< RS	.096	.016	6.015	***	
RB	< KT	.037	.019	1.951	.051	
RB	< AB	.024	.019	1.247	.212	
RB	< GI	.264	.021	12.663	***	
TKN3	< KT	.800				
TKN2	< KT	.920				
TKN1	< KT	.820				
ATT2	< AB	.900				
ATT1	< AB	.910				
GINF4	< GI	.870				
GINF3	< GI	.900				
GINF2	< GI	.890				
GINF1	< GI	.810				
LENF1	< EN	.840				
LENF2	< EN	.840				
LENF3	< EN	.740				
BIN2	< Bl	.700				
BIN1	< Bl	.920				
	< RS					
RSTR1	< RS	.810				
	< RB	.950				
RRB2	< RB	.820				

Standardized R	<u>Regressio</u> n	Weights:	(Group number	1 -	Default model)

		Ectimata	
	-		
<	KΤ		
<	ΕN	033	
		.519	
<	RS		
<	KΤ	.031	
<	AB	.024	
<	GI		
<	KΤ	.723	
<	KΤ	.922	
<	KΤ	.811	
<	AB	.871	
<	AB	.934	
<	GI	.863	
<	GI	.904	
<	GI	.891	
<	GI	.805	
<	ΕN	.836	
<	ΕN	.847	
<	ΕN	.684	
<	BI	.693	
<	BI	.927	
<	RS	.872	
<	RS	.792	
<	RB	.956	
<	RB	.782	
		< KT < AB < GI < BI < RS < KT < KT < KT < GI < GI < GI < EN < EN < BI < RS < RS	< RS .373 < RS .050 < RS .136 < RS .136 < RS .136 < RS .136 < RS .112 < RS .112 < RS .106 < RS .836 < EN .836 < EN .847 < RS .792 < RS .792 < RB .956

Covariances: (Group number 1 - Default model)

0010	anan	663.	loionb	num		elault mou
			Estimate	S.E.	C.R.	
KΤ	<>	ΕN	.193	.020	9.477	***
KΤ	<>	GI	149	.019	-7.766	***
GI	<>	RS	.111	.026	4.219	***
GI	<>	ΕN	.322	.028	11.449	***
EN	<>	RS	.214	.030	7.081	***
KΤ	<>	RS	.241	.021	11.261	***
Z1	<>	RS	.020	.156	.125	.900
Z1	<>	ΕN	.343	.037	9.298	***
Z1	<>	GI	.107	.085	1.249	.212
e14	<>	e18	.195	.010	20.340	***
e7	<>	e6	.112	.009	12.650	***
e1	<>	e14	.044	.007	6.372	***
e5	<>	e10	.041	.009	4.787	***
e12	<>	e14	053	.011	-4.924	***
e6	<>	e10	.055	.009	6.285	***
e6	<>	Z3	.064	.009	6.949	***
e12	<>	GI	.103	.020	5.155	***
e14	<>	KΤ	.096	.011	8.345	***
e3	<>	KΤ	.063	.010	6.056	***
e14	<>	RS	.083	.016	5.312	***
e12	<>	ΕN	.081	.020	4.029	***
e18	<>	GI	.067	.013	5.240	***
e10	<>	GI	096	.017	-5.599	***
e11	<>	RS	.048	.018	2.719	.007
e1	<>	GI	065	.011	-5.617	***
e6	<>	RS	.060	.014	4.155	***
e3	<>	Z1	030	.011	-2.708	.007

Correlations: (Group number 1 - Default model)

			Estimate
KΤ	<> E	N	.195
KΤ	<> (31	152
GI	<> F	S	.084
GI	<> E	N	.249
ΕN	<> R	S	.159
KΤ	<> F	S	.236
Z1	<> F	S	.019
Z1	<> E	N	.344
Z1	<> @	31	.108
e14	<> e	18	.427
e7	<> e	6	.322
e1	<> e	14	.122
e5	<> e	10	.123
e12	<> e	14	090
e6	<> e	10	.129
e6	<> Z	3	.135
e12	<> 0	31	.110
e14	<> K	Т	.156
e3	<> K	Т	.123
e14	<> F	S	.101
e12	<> E	N	.085
e18	<> 0	SI	.092
e10	<> (H	134
e11	<> R	S	.068
e1	<> (H	111
e6	<> R	S	.076
e3	<> Z	1	058

Variances: (Group number 1 - Default model)

			S.E.			
КТ				34.616	***	<u>~</u>
GI				36.878	***	
EN				32.757	***	
RS				32.213	***	
Z1				26.341	***	
Z2		508	.020	26.054	***	
Z3		493	.017	28.839	***	
e3		342	.011	32.481	***	
e2		112	.007	15.916	***	
e1		264	.008	31.528	***	
e5		283	.012	24.191	***	
e4		133	.010	13.163	***	
e9		331	.011	31.106	***	
e8		231	.009	26.193	***	
e7		263	.009	27.682	***	
e6		457	.014	33.367	***	
e10	-	399	.015	25.830	***	
e11		364	.015	24.565	***	
e12		694	.021	32.544	***	
e14		499	.014	35.176	***	
e13		134	.012	11.597	***	
e16		313	.018	17.193	***	
e15		536	.020	26.711	***	
e17		095	.010	9.185	***	
e18		416	.013	32.042	***	
Squar				orrelatio	ons: (Gr	oup number 1 - Default model)
	E	stim				
AB			808			
BI			174			
RB			561			
RRB2			63			
RRB1			914			
RSTR			627			
RSTF	R2		760			
BIN1		3.	359			

BIN2

LENF3

LENF2

LENF1

GINF1

GINF2

GINF3

GINF4

ATT1

ATT2

TKN1

TKN2

TKN3

.494

.546

.717

.698

.648

.794

.818

.745

.873

.759

.658

.851

.630

T

Matrices (Group number 1 - Default model) Factor Score Weights (Group number 1 - Default model)

	RRE 2	RRB 2 1	RSTRI 1	RSTR 2	BIN 1	BINI 2		_ENFLE 2	ENFG 1	INF 1	GINF (2	GINF 3	GINF 4	ATT A 1	.TT ⁻ 2	TKN 1	٦ TKN ۴ 2 ٩ 3	I K N 3
R S	005	5 .041	.336	.604	.01 0	.02 2	005	.013	.012 .	022	010	001	001	.069.0)34 .	.006). 0 017 (3)) 3
E N	014	.011	007	012	.00 9	.01 7	.201	.404 .	.391	044	.049	.035	.024	.081 .0	- 19 ⁻	.018). 019 (1)) 1
GI	.012	.031	.000	001	.05 6	.01 5	.020	.021	.013 .	092	.273	.359	.242	- .019.0	- 007.	- .024	.003 _ 0 1 003.)) 1
K T	.002	.005	.003	.006	.00 4	.00 1	.003	.003 .	.002	004	.001	001	001	.023.0)11.	.219	.1 9 585. 1	1 Э 1
A B	.000	.002	.015	.027	- .01 6	.00. 0	.009	.029	.005	001	009	011	007	.653.3	803 .	.012	.028 .(2	- 0 0 2
BI	051	.141	.002	.004	.69 4	.17 2	.015	.004 .	.002	005	.030	.032	.022	- .016.0	- 008 .	- .030). 0 004. 6	0 0 6
R B	.174	.757	.006	.011	.09 6	- .04 9	001	.003	.004 .	026	.000	.012	.008	.001 .0	001.	.007). 004 (1)) 1
To	tal E	ffects RS		p num GI KT				t mode	el)									
AE	3		00029															
Ы		.079.	043 .57	79.031	10	5.000	0.000											
RE			006.58	81.062														
	RB2		~~~ /-															
			005.47															
RS		.141	006 .5	52.059	03	3.532	2.950											
	STR1	.141 .810 .	006 .55 000 .00	52.059 00.000	03: .00	3.532 0.000	2.950 0.000											
R	STR1	.141 .810 . .850 .	006 .5	52.059 00.000 00.000	0.03 000.00	3.532 0.000 0.000	2.950 0.000 0.000											
RS BI BI	STR1 STR2 N1 N2	.141 .810 . .850 . .072 . .055 .	006 .55 000 .00 000 .00 039 .53 030 .40	52.059 00.000 00.000 33.028 06.021	03 .00 .00 .00 .09 .09	3.532 0.000 0.000 7.920 4.700	2.950 0.000 0.000 0.000 0.000											
RS BI BI LE	STR1 STR2 N1 N2 SNF3	.141 .810 . .850 . .072 . .055 .	006 .55 000 .00 000 .00 039 .53 030 .40 740 .00	52.059 00.000 00.000 33.028 06.021 00.000	03 .00(.00(.00(.074) .00(3.532 0.000 0.000 7.920 4.700 0.000	2.950 0.000 0.000 0.000 0.000 0.000											
RS BI BI LE LE	STR1 STR2 N1 N2 NF3 NF3	.141 .810 . .850 . .072 . .055 . .000 .	006 .55 000 .00 000 .00 039 .55 030 .40 740 .00 840 .00	52.059 00.000 00.000 33.028 06.021 00.000 00.000	03 .00(.00(.00(.074 .00(.00(3.532 0.000 0.000 7.920 4.700 0.000	2.950 0.000 0.000 0.000 0.000 0.000 0.000											
RS BI LE LE	STR1 STR2 N1 N2 NF3 NF2 NF1	.141 .810 . .850 . .072 . .075 . .000 . .000 .	006 .55 000 .00 000 .00 039 .53 030 .40 740 .00 840 .00	52.059 00.000 00.000 33.028 06.021 00.000 00.000 00.000	03 .00(.00(.00(.074 .00(.00(.00(3.532 0.000 7.920 4.700 0.000 0.000	2.950 0.000 0.000 0.000 0.000 0.000 0.000 0.000											
RS BI LE LE GI	STR1 STR2 N1 N2 NF3 NF3 NF2 NF1 NF1	.141 .810 . .850 . .072 . .055 . .000 . .000 . .000 .	006 .55 000 .00 000 .00 039 .55 030 .40 740 .00 840 .00	52.059 00.000 00.000 33.028 06.021 00.000 00.000 00.000 10.000	03; .00(.00(.09; .074 .00(.00(.00(3.532 0.000 7.920 4.700 0.000 0.000 0.000	2.950 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000											
RS BI LE LE GI GI	STR1 STR2 N1 N2 NF3 NF3 NF1 NF1 NF1	.141 .810 . .850 . .072 . .005 . .000 . .000 . .000 . .000 .	006 .59 000 .00 039 .53 030 .40 740 .00 840 .00 840 .00	52.059 00.000 00.000 33.028 06.021 00.000 00.000 00.000 10.000 90.000	03; .00(.00(.00(.074) .00(.00(.00(.00(3.532 0.000 7.920 4.700 0.000 0.000 0.000 0.000	2.950).000).000).000).000).000).000).000).000).000											
RS BI LE LE GI GI GI	STR1 STR2 N1 N2 NF3 NF2 NF1 NF1 NF2 NF3 NF4	.141 .810 . .850 . .072 . .005 . .000 . .000 . .000 . .000 . .000 . .000 .	006 .58 000 .00 039 .53 030 .40 740 .00 840 .00 840 .00 000 .89 000 .89 000 .81	52.059 00.000 00.000 33.028 06.021 00.000 00.000 00.000 00.000 00.000 70.000	03 .000 .000 .001 .001 .000 .000 .000 .000 .000 .000 .000	3.532 0.000 7.920 4.700 0.000 0.000 0.000 0.000 0.000 0.000	2.950).000).000).000).000).000).000).000).000).000).000).000											
RS BI LE LE GI GI GI AT	STR1 STR2 N1 N2 NF3 NF2 NF1 NF1 NF2 NF3 NF4 T1	.141 .810 . .850 . .072 . .005 . .000 . .000 . .000 . .000 . .000 . .000 . .000 . .304 .	006 .59 000 .00 039 .53 030 .40 740 .00 840 .00 840 .00 840 .00 000 .8 000 .8 000 .8 000 .8	52.059 00.000 00.000 33.028 06.021 00.000 00.000 00.000 00.000 00.000 70.000 58.278	03 .000 .000 097 .074 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	3.532 0.000 7.920 4.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.950).000).000).000).000).000).000).000).000).000).000).000).000											
RS BI LE GI GI GI AT	STR1 STR2 N1 N2 NF3 NF2 NF1 NF1 NF2 NF3 NF4 T1 T2	.141 .810 . .850 . .072 . .005 . .000 . .000 . .000 . .000 . .000 . .000 . .000 . .304 . .300 .	006 .55 000 .00 039 .53 030 .40 740 .00 840 .00 840 .00 840 .00 000 .85 000 .85 000 .85 000 .26	52.059 00.000 00.000 33.028 06.021 00.000 00.000 00.000 00.000 00.000 70.000 68.278 65.275	033 .000 .000 .009 .007 .000 .000 .000 .000	3.532 0.000 0.000 7.920 4.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.950).000).000).000).000).000).000).000).000).000).000).000).000).000).000											
RS BI LE LE GI GI GI AT AT	STR1 STR2 N1 N2 NF3 NF2 NF1 NF1 NF2 NF3 NF4 T1	.141 .810 . .850 . .072 . .005 . .000 . .000 . .000 . .000 . .000 . .000 . .304 . .300 . .300 .	006 .59 000 .00 039 .53 030 .40 740 .00 840 .00 840 .00 840 .00 000 .8 000 .8 000 .8 000 .8	52.059 00.000 00.000 33.028 06.021 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 68.278 65.275 00.820	033 .000 .000 .009 .007 .000 .000 .000 .000	3.532 0.000 7.920 7.920 4.700 0.0000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000000 0.00000 0.00000000	2.950).000).000).000).000).000).000).000).000).000).000).000).000).000).000											

RS EN GI KT AB BI RB AB 373 .000318.253 .000.000 .000 .000 BI .094 .050 .667.027112 .000 .000 RB1 .157007 .593.049033.496.956		
BI .094 .050 .667.027.112.000.000 RB .164007 .620.051034.519.000 RRB2 .128005 .485.040027.406.782 RRB1 .157007 .593.049033.496.956 RSTR1 .792 .000 .000.000 .000.000 BIN1 .087 .046 .618.025104.927.000 BIN2 .065 .035 .462.019078.693.000 LENF3 .000 .847 .000.000 .000.000.000 LENF1 .000 .847 .000.000 .000.000.000 GINF1 .000 .805.000 .000.000.000 GINF1 .000 .805.000 .000.000.000 GINF2 .000 .805.000 .000.000.000 GINF1 .000 .805.000 .000.000.000 GINF2 .000 .000 .805.000 .000.000 GINF2 .000 .863.000 .000.000 GINF3 .000 .297.237 .934.000.000 ATT2 .325 .000277.221 .871.000.000 TKN1 .000 .000 .000.922 .000.000.000 TKN2 .000 .000 .000.000 J00 .000 .000 .000.000 RB .334 .000295.306 .000.000 RB .096030 .264.037 .024.560.000 RRB1 .000 .000 .000.000 .000.000 RB2 .000 .000 .000.000 .000.000 RB1 .000 .000 .00		RS EN GIKT AB BIRB
RB .164007 .620.051034.519.000 RRB2 .128005 .485.040027.406.782 RRB1 .157007 .593.049033.496.956 RSTR1 792 .000 .000.000 .000.000 RSTR2 872 .000 .000.000 .000.000 .000 BIN1 .087 .046 .618.025104.927.000 BIN2 .065 .035 .462.019078.693.000 LENF3 .000 .847 .000.000 .000.000 LENF1 .000 .847 .000.000 .000.000 .000 GINF1 .000 .863.000 .000.000 .000 .000 GINF2 .000 .001 .863.000 .000 .000 GINF3 .000 .001 .863.000 .000 .000 GINF4 .000 .000 .000.000 .000 .000 ATT2 .325 .000277.221 .871.000.000 .714 KN .01 .48 .01 .74 .88 AB .334 .000295.306 .000.000	AB	.373 .000318.253 .000.000.000
RRB2 128-005 .485.040-027.406.782 RRB1 157-007 .593.049-033.496.956 RSTR1 792 000 .000.000 .000.000 RSTR2 872 .000 .000.000 .000.000 .000 BIN1 .087 .046 .618.025104.927.000 .000 BIN2 .065 .035 .462.019078.693.000 LENF3 .000 .847 .000.000 .000.000 .000 LENF2 .000 .847 .000.000 .000.000 .000 GINF1 .000 .863 .000.000 .000 .000 GINF2 .000 .904 .000 .000 .000 GINF3 .000 .000 .863 .000 .000 GINF4 .000 .000 .863 .000 .000 ATT2 .325 .000277 .21 .871 .000 TKN1 .000 .000 .000 .000 .000 .000 TKN1 .000 .000 .000 .000 .000 .000	BI	.094 .050 .667.027112.000.000
RRB1 157007 .593.049033.496.956 RSTR1 792 .000 .000.000 .000.000 RSTR2 872 .000 .000.000 .000.000 BIN1 .087 .046 .618.025104.927.000 BIN2 .065 .035 .462.019078.693.000 LENF3 .000 .684 .000.000 .000.000 .000 LENF2 .000 .847 .000.000 .000.000 .000 LENF1 .000 .863 .000.000 .000 .000 GINF1 .000 .000 .805.000 .000 .000 GINF3 .000 .000 .863.000 .000 .000 GINF4 .000 .000 .863.000 .000 .000 ATT1 .349 .000277.221 .871.000.000 .711 TKN2 .000 .000 .000.000 .000 .000 TKN3 .000 .000 .000.000 .000 .000 TKN3 .000 .000 .000.000 .000 .000	RB	.164007 .620.051034.519.000
RSTR1 792 000 000.000 000.000 RSTR2 872 000 000.000 000.000 000 BIN1 087 046 618.025104.927.000 BIN2 065 035 .462.019078.693.000 LENF3 000 .847 .000.000 .000.000 000 LENF2 000 .847 .000.000 .000 .000 GINF1 .000 .863 .000 .000 .000 GINF2 .000 .000 .891.000 .000 .000 GINF3 .000 .000 .863.000 .000 .000 GINF4 .000 .000 .863.000 .000 .000 ATT1 .349 .000277.221 .871.000.000 .711 AW .000 .000 .000.000 .000 .000 TKN1 .000 .000 .000.000 .000 .000 TKN2 .000 .000 .000.000 .000 .000 TKN3 .000 .000 .000.000 .000	RRB2	.128005 .485.040027.406.782
RSTR2 872 .000 .000.000 .000.000 .000 BIN1 .087 .046 .618.025 .104.927.000 BIN2 .065 .035 .462.019 .078.693.000 LENF3 .000 .847 .000.000 .000 .000 LENF1 .000 .847 .000.000 .000 .000 GINF1 .000 .847 .000 .000 .000 .000 GINF1 .000 .847 .000 .000 .000 .000 .000 GINF1 .000 .000 .805.000 .000 .000 .000 .000 GINF2 .000 .000 .863.000 .000 .000 .000 .000 GINF4 .000 .000 .000 .000 .000 .000 .000 ATT2 .325 .000 .277.221 .871.000 .000 .000 TKN1 .000 .000 .000 .000 .000 .000 .000 KN3 .000 .000 .000 .000<	RRB1	.157007 .593.049033.496.956
BIN1 .087 .046 .618.025104.927.000 BIN2 .065 .035 .462.019078.693.000 LENF3 .000 .847 .000.000 .000 LENF1 .000 .836 .000.000 .000 .000 GINF1 .000 .836 .000 .000 .000 .000 GINF2 .000 .000 .891.000 .000 .000 .000 GINF3 .000 .000 .904.000 .000 .000 .000 GINF4 .000 .000 .803.00 .000 .000 .000 ATT2 .325 .000277.221 .871.000.000 .000 .000 .000 TKN1 .000 .000 .000.1001.22 .000.000 .000 .000 TKN2 .000 .000 .000 .000 .000 .000 .000 TKN2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 <t< td=""><td>RSTR1</td><td>.792 .000 .000.000 .000.000.000</td></t<>	RSTR1	.792 .000 .000.000 .000.000.000
BIN2 .065 .035 .462.019078.693.000 LENF3 .000 .684 .000.000 .000.000 LENF2 .000 .847 .000.000 .000.000 GINF1 .000 .836 .000.000 .000.000 .000 GINF1 .000 .000 .891.000 .000.000 .000 GINF3 .000 .000 .994.000 .000.000 .000 GINF3 .000 .000 .833.000 .000.000 .000 ATT1 .349 .000297.237 .934.000.000 .4TT2 .325 .000277.221 .871.000.000 TKN1 .000 .000 .000.22 .000.000.000 .000 .000 TKN2 .000 .000 .000.22 .000.000 .000 .000 TKN3 .000 .000 .000.000 .000 .000 .000 TKN3 .000 .000 .000.000 .000 .000 .000 BI .114 .043 .548.063105.000 .000 .000 RB2 .000 </td <td>RSTR2</td> <td>2.872 .000 .000.000 .000.000.000</td>	RSTR2	2.872 .000 .000.000 .000.000.000
LENF3 000 .684 .000.000 .000.000.000 LENF2 000 .847 .000.000 .000.000.000 GINF1 000 .836 .000.000 .000.000.000 GINF2 000 .000 .805.000 .000.000.000 GINF3 000 .000 .904.000 .000.000.000 GINF4 000 .000 .863.000 .000.000 ATT1 349 .000-297.237 .934.000.000 ATT2 325 .000-277.221 .871.000.000 TKN1 000 .000 .000.811 .000.000.000 TKN2 000 .000 .000.922 .000.000.000 TKN3 .000 .000 .000.723 .000.000.000 TKN3 .000 .000 .000.723 .000.000.000 TKN3 .000 .000 .000.723 .000.000.000 BI 114 .043 .548.063105.000.000 RB 096030 .264.037 .024.560.000 RB2 000 .000 .000.000 .000.000.820 RRB1 .000 .000 .000.000 .000.000.820 RSTR1 .810 .000 .000.000 .000.000.000 BIN1 .000 .000 .000.000 .000.000.000 BIN1 .000 .000 .000.000 .000.000 BIN1 .000 .000 .000.000 .000.000 GINF3 .000 .740 .000.000 .000.000 BIN1 .000 .840 .000.000 .000.000 GINF1 .000 .840 .000.000 .000.000 GINF1 .000 .840 .000.000 .000.000 GINF1 .000 .840 .000.000 .000.000 GINF1 .000 .840 .000.000 .000.000 ATT1 .000 .840 .000.000 .000.000 CINF1 .000 .840 .000.000 .000.000 GINF1 .000 .870.000 .000.000 GINF1 .000 .870.000 .000.000 GINF1 .000 .000 .900.000 .000.000 GINF1 .000 .000 .000 .000.000 GINF1 .000 .000 .000 .000.000 GINF1 .000 .000 .000 .000.000 GINF1 .000 .000 .000 .000.000 GINF2 .000 .870.000 .000.000 GINF1 .000 .000 .000 .000.000 GINF1 .000 .000 .000 .000.000 GINF3 .000 .770 .000 GINF3 .000 .700 .000 .000 .000.000 GINF3 .000 .700 .000 .000 .000.000 GINF4 .000 .000 .000 .000 .000.000 GINF3 .000 .000 .000 .000 .000 .000 .000 GINF4 .000 .000 .000 .000 .000 .000 .000 .0	BIN1	.087 .046 .618.025104.927.000
LENF2 .000 .847 .000.000 .000.000.000 LENF1 .000 .836 .000.000 .000.000.000 GINF1 .000 .000 .891.000 .000.000.000 GINF2 .000 .000 .904.000 .000.000.000 GINF3 .000 .000 .904.000 .000.000 GINF4 .000 .000 .863.000 .000.000 ATT1 .349 .000-297.237 .934.000.000 ATT2 .325 .000-277.221 .871.000.000 TKN1 .000 .000 .000.922 .000.000.000 TKN2 .000 .000 .000.723 .000.000.000 TKN3 .000 .000 .000.723 .000.000.000 TKN3 .000 .000 .000.723 .000.000.000 BI .114 .043 .548.063105.000.000 RB .096030 .264.037 .024.560.000 RRB2 .000 .000 .000.000 .000.000.820 RRB1 .000 .000 .000.000 .000.000.820 RSTR1.810 .000 .000 .000.000.000 BIN1 .000 .000 .000.000 .000.000.000 BIN1 .000 .000 .000.000 .000.000.000 BIN1 .000 .000 .000.000 .000.000 LENF3 .000 .740 .000.000 .000.000.000 LENF1 .000 .840 .000.000 .000.000 GINF1 .000 .000 .870.000 .000.000 GINF1 .000 .000 .870.000 .000.000 GINF4 .000 .000 .870.000 .000.000 GINF4 .000 .000 .000 .000 .000 .000 .000 .000.000 GINF4 .000 .000 .000 .000 .000.000 GINF4 .000 .000 .000 .000 .000 .000 .000 .0	BIN2	.065 .035 .462.019078.693.000
LENF1 .000 .836 .000.000 .000.000.000 GINF1 .000 .000 .891.000 .000.000 .000 GINF3 .000 .000 .904.000 .000.000 .000 GINF4 .000 .000 .863.000 .000.000 .000 ATT1 .349 .000297.237 .934.000.000 ATT2 .325 .000297.237 .934.000.000 TKN1 .000 .000 .000.000 .000 TKN1 .000 .000 .000.292 .000.000 TKN2 .000 .000 .000.723 .000.000 TKN3 .000 .000 .000.000 .000 TKN3 .000 .000 .000.000 .000 BI .114 .043 .548.063105.000.000 .000 RB2 .000 .000 .000.000 .000 .000 RB1 .000 .000 .000.000 .000 .000 RSTR1 .810 .000 .000 .000 .000 RSTR1 .000<	LENF3	.000 .684 .000.000 .000.000.000
GINF1 .000 .000 .805.000 .000.000 .000 GINF2 .000 .000 .891.000 .000.000 .000 GINF3 .000 .000 .863.000 .000.000 .000 ATT1 .349 .000297.237 .934.000.000 .941.000 ATT2 .325 .000277.221 .871.000.000 TKN1 .000 .000 .000.922 .000.000 TKN2 .000 .000 .000.723 .000.000 TKN3 .000 .000 .000.000 .000 TKN3 .000 .000 .000.000 .000 TKN3 .000 .000 .000.000 .000 BI .114 .043 .548.063105.000 .000 RB2 .000 .000 .000.000 .000 .000 RB1 .000 .000 .000.000 .000 .000 RB1 .000 .000 .000 .000 .000 .000 RB1 .000 .000 .000 .000 .000 .	LENF2	.000 .847 .000.000 .000.000.000
GINF2 .000 .000 .891.000 .000.000.000 GINF3 .000 .000 .863.000 .000.000 .000 ATT1 .349 .000297.237 .934.000.000 .941.000 ATT2 .325 .000297.221 .871.000.000 .971.221 .871.000.000 TKN1 .000 .000 .902.2 .000.000.000 .971.221 .871.000.000 TKN2 .000 .000 .902.2 .000.000 .900.000 .972.3 .934.000.000 TKN2 .000 .000 .902.2 .000.000.000 .900.000 .972.3 .934.000.000 .990.000 <td< td=""><td>LENF1</td><td>.000 .836 .000.000 .000.000.000</td></td<>	LENF1	.000 .836 .000.000 .000.000.000
GINF3 .000 .000 .904.000 .000.000 .000 GINF4 .000 .000 .863.000 .000.000 .000 ATT1 .349 .000297.237 .934.000.000 ATT2 .325 .000277.221 .871.000.000 TKN1 .000 .000 .000.922 .000.000 TKN2 .000 .000 .000.723 .000.000 TKN3 .000 .000 .000.723 .000.000 TKN3 .000 .000 .000.000 .000 Direct Effects (Group number 1 - Default model) .000 .001.295.306 .000.000 BI .114 .043 .548.063105.000.000 .000 RB .096030 .264.037 .024.560.000 RRB1 .000 .000 .000.000.000 .000 RB1 .000 .000 .000.000 .000 RSTR2 .850 .000 .000.000 .000 RSTR2 .000 .000 .000.000 .000 BIN1 .000 .000 .000 .000	GINF1	.000 .000 .805.000 .000.000.000
GINF4 .000 .000 .863.000 .000.000 .000 ATT1 .349 .000297.237 .934.000.000 ATT2 .325 .000277.221 .871.000.000 TKN1 .000 .000 .000.922 .000.000 TKN2 .000 .000 .000.922 .000.000 TKN3 .000 .000 .000.723 .000.000 TKN3 .000 .000 .000.723 .000.000 Direct Effects (Group number 1 - Default model) RS EN GI KT AB BI RB AB .334 .000295.306 .000.000 .000 .000 .000 .000 .000 .000 .000 BI .114 .043 .548.063105.000.000 .000	GINF2	.000 .000 .891.000 .000.000.000
ATT1 .349 .000297.237 .934.000.000 ATT2 .325 .000277.221 .871.000.000 TKN1 .000 .000 .000.922 .000.000 TKN2 .000 .000 .000.922 .000.000 TKN2 .000 .000 .000.723 .000.000 TKN3 .000 .000.295.306 .000.000 .000 BI .114 .043 .548.063105.000.000 .000 RB .096030 .264.037 .024.560.000 RRB1 .000 .000.000 .000.000.000 .000 RSTR1.810 .000 .000.000 .000.000 .000 RSTR2 .850 .000 .000.000 .000.000 .000 RSTR1 .000 .000.000 .000.000 .000 .000 .000 BIN1 .000 .000 .000.000 .000.000 .000 .000 .000 BIN1 .000 .000 .000.000 .000.000 .000 .000 .000 BIN1 .000 .000 .000.000 </td <td>GINF3</td> <td>.000 .000 .904.000 .000.000.000</td>	GINF3	.000 .000 .904.000 .000.000.000
ATT2 .325 .000277.221 .871.000.000 TKN1 .000 .000 .000.811 .000.000 TKN2 .000 .000 .000.922 .000.000 TKN3 .000 .000 .000.723 .000.000 TKN3 .000 .000 .000.723 .000.000 Direct Effects (Group number 1 - Default model) RS EN GI KT AB BI RB AB .334 .000295.306 .000.000 .000 .000 .000 BI .114 .043 .548.063105.000.000 .000 <t< td=""><td>GINF4</td><td>.000 .000 .863.000 .000.000.000</td></t<>	GINF4	.000 .000 .863.000 .000.000.000
TKN1 .000 .000 .000.811 .000.000 TKN2 .000 .000 .000.922 .000.000 TKN3 .000 .000 .000.723 .000.000 Direct Effects (Group number 1 - Default model) RS EN GI KT AB BI RB AB .334 .000295.306 .000.000 .000 BI .114 .043 .548.063105.000.000 RB .096030 .264.037 .024.560.000 RRB2 .000 .000 .000.000 .000.000 RRB1 .000 .000 .000.000 .000 RSTR2.850 .000 .000.000 .000.000 .000 BIN1 .000 .000 .000.000 .000 .000 BIN2 .000 .000 .000.000 .000 .000 LENF3 .000 .400 .000 .000 .000 LENF1 .000 .890.000 .000.000 .000 .000 GINF1 .000 .000 .890.000 .000 <td>ATT1</td> <td>.349 .000297.237 .934.000.000</td>	ATT1	.349 .000297.237 .934.000.000
TKN2 .000 .000 .000.922 .000.000.000 TKN3 .000 .000 .000.723 .000.000.000 Direct Effects (Group number 1 - Default model) RS EN GI KT AB BI RB AB .334 .000295.306 .000.000.000 .000 BI .114 .043 .548.063105.000.000 RB .096030 .264.037 .024.560.000 RRB2 .000 .000 .000.000 .000.000 RRB1 .000 .000 .000.000 .000 RSTR2.850 .000 .000.000 .000.000 .000 BIN1 .000 .000 .000.000 .000 .000 BIN2 .000 .000 .000.000 .000 .000 .000 LENF3 .000 .740 .000.000 .000 .000 .000 LENF1 .000 .840 .000.000 .000 .000 .000 .000 GINF1 .000 .000 .890.000 .000.000 .000	ATT2	.325 .000277.221 .871.000.000
TKN3 .000 .000 .723 .000 .000 Direct Effects (Group number 1 - Default model) RS EN GI KT AB BI RB AB .334 .000295.306 .000.000.000 .000 .000 .000 BI .114 .043 .548.063105.000.000 .000 </td <td>TKN1</td> <td>.000 .000 .000.811 .000.000.000</td>	TKN1	.000 .000 .000.811 .000.000.000
Direct Effects (Group number 1 - Default model) RS EN GI KT AB BI RB AB .334 .000295.306 .000.000.000 BI .114 .043 .548.063105.000.000 RB .096030 .264.037 .024.560.000 RB2 .000 .000 .000.000 .000.000 .000	TKN2	.000 .000 .000.922 .000.000.000
RS EN GI KT AB BI RB AB .334 .000295.306 .000.000.000 BI .114 .043 .548.063105.000.000 RB .096030 .264.037 .024.560.000 RB .096030 .264.037 .024.560.000 RRB2 .000 .000 .000.000 .000.000.000 .000.000 .000 RRB1 .000 .000 .000.000 .000.000 .000 .000 RSTR1 .810 .000 .000.000 .000.000 .000 .000 BIN1 .000 .000 .000.000 .000.000 .000 .000 BIN2 .000 .000 .000.000 .000.000 .000	TKN3	.000 .000 .000.723 .000.000.000
AB .334 .000295.306 .000.000.000 BI .114 .043 .548.063105.000.000 RB .096030 .264.037 .024.560.000 RRB2 .000 .000 .000.000 .000.000.820 RRB1 .000 .000 .000.000 .000.000.950 RSTR1.810 .000 .000.000 .000.000.000 RSTR2.850 .000 .000.000 .000.000.000 BIN1 .000 .000 .000.000 .000.000 BIN2 .000 .000 .000.000 .000.700.000 LENF3 .000 .740 .000.000 .000.000.000 LENF1 .000 .840 .000.000 .000.000.000 GINF1 .000 .000 .810.000 .000.000.000 GINF1 .000 .000 .900.000 .000.000.000 GINF3 .000 .000 .900.000 .000.000 GINF4 .000 .000 .900.000 .000.000 ATT1 .000 .000 .000.000 .900.000 ATT2 .000 .000 .000 .000.000 ATT2 .000 .000 .000 .000.000 ATT2 .000 .000 .000 .000.000	Direct	Effects (Group number 1 - Default model)
BI .114 .043 .548.063105.000.000 RB .096030 .264.037 .024.560.000 RRB2 .000 .000 .000.000 .000.000.820 RRB1 .000 .000 .000.000 .000.000.950 RSTR1.810 .000 .000.000 .000.000.000 RSTR2.850 .000 .000.000 .000.000.000 BIN1 .000 .000 .000.000 .000.920.000 BIN2 .000 .000 .000.000 .000.700.000 LENF3 .000 .740 .000.000 .000.000.000 LENF1 .000 .840 .000.000 .000.000.000 GINF1 .000 .840 .000.000 .000.000.000 GINF1 .000 .840 .000.000 .000.000.000 GINF3 .000 .000 .870.000 .000.000.000 GINF4 .000 .000 .000.000 .000.000.000 ATT1 .000 .000 .000.000 .900.000.000 ATT2 .000 .000 .000.000 .900.000.000 TKN1 .000 .000 .000.920 .000.000		RS EN GIKT AB BIRB
RB .096030 .264.037 .024.560.000 RRB2 .000 .000 .000.000 .000.000.820 RRB1 .000 .000 .000.000 .000.000.950 RSTR1 .810 .000 .000.000 .000.000 RSTR2 .850 .000 .000.000 .000.000 BIN1 .000 .000 .000.000 .000.920.000 BIN2 .000 .000 .000.000 .000.700.000 LENF3 .000 .740 .000.000 .000.000.000 LENF2 .000 .840 .000.000 .000.000 LENF1 .000 .840 .000.000 .000.000 GINF1 .000 .840 .000.000 .000.000 GINF1 .000 .840 .000.000 .000.000 GINF3 .000 .000 .900.000 .000.000 GINF4 .000 .000 .900.000 .000 GINF4 .000 .000 .900.000 .000 ATT1 .000 .000 .900.000 .000 <td>AB</td> <td>.334 .000295.306 .000.000.000</td>	AB	.334 .000295.306 .000.000.000
RRB2 .000 .000 .000.000 .000.000.820 RRB1 .000 .000 .000.000 .000.000.950 RSTR1 .810 .000 .000.000 .000.000 RSTR2 .850 .000 .000.000 .000.000 BIN1 .000 .000 .000.000 .000.920.000 BIN2 .000 .000 .000.000 .000.700.000 LENF3 .000 .740 .000.000 .000.000.000 LENF2 .000 .840 .000.000 .000.000 LENF1 .000 .840 .000.000 .000.000 GINF1 .000 .000 .900.000 .000.000 GINF3 .000 .000 .900.000 .000 GINF4 .000 .000 .900.000 .000 ATT1 .000 .000 .900.000 .900.000 ATT2 .000 .000 .900.000 .000.000 TKN1 .000 .000 .000.000 .000.000	BI	.114 .043 .548.063105.000.000
RRB1 .000 .000 .000.000 .000.000.950 RSTR1 .810 .000 .000.000 .000.000 .000 RSTR2 .850 .000 .000.000 .000.000 .000 BIN1 .000 .000 .000.000 .000.920.000 BIN2 .000 .000 .000.000 .000.700.000 LENF3 .000 .740 .000.000 .000.000.000 LENF2 .000 .840 .000.000 .000.000 .000 LENF1 .000 .840 .000.000 .000.000 .000 GINF1 .000 .000 .890.000 .000.000 .000 GINF2 .000 .000 .900.000 .000.000 .000 GINF3 .000 .000 .900.000 .000.000 .000 ATT1 .000 .000 .900.000 .900.000 .000 ATT2 .000 .000 .000.000 .900.000 .000 .000 TKN1 .000 .000 .000.000 .000.000 .000 .000	RB	.096030 .264.037 .024.560.000
RSTR1.810 .000 .000.000 .000.000 RSTR2.850 .000 .000.000 .000.000 BIN1 .000 .000 .000.920.000 BIN2 .000 .000 .000.700.000 LENF3 .000 .740 .000.000 .000.000.000 LENF2 .000 .840 .000.000 .000.000 .000 LENF1 .000 .840 .000.000 .000.000 .000 .000 GINF1 .000 .840 .000.000 .000.000 .000 .000 GINF1 .000 .840 .000.000 .000.000 .000 .000 GINF3 .000 .000 .890.000 .000.000 .000 .000 GINF3 .000 .000 .900.000 .000.000 .000 .000 GINF4 .000 .000 .000.000 .900.000 .000 .000 ATT1 .000 .000 .000.000 .900.000 .000 .000 ATT2 .000 .000 .000.000 .900.000 .000	RRB2	.000 .000 .000.000 .000.000.820
RSTR2 .850 .000 .000.000 .000.000 BIN1 .000 .000 .000.000 .000.920.000 BIN2 .000 .000 .000.000 .000.700.000 LENF3 .000 .740 .000.000 .000.000.000 LENF2 .000 .840 .000.000 .000.000.000 LENF1 .000 .840 .000.000 .000.000.000 GINF1 .000 .000 .810.000 .000.000.000 GINF2 .000 .000 .890.000 .000.000.000 GINF3 .000 .000 .900.000 .000.000 GINF4 .000 .000 .900.000 .000.000 ATT1 .000 .000 .900.000 .900.000 ATT2 .000 .000 .000.000 .900.000 TKN1 .000 .000 .000.000 .900.000	RRB1	.000 .000 .000.000 .000.000.950
BIN1 .000 .000 .000.000 .000.920.000 BIN2 .000 .000 .000.000 .000.700.000 LENF3 .000 .740 .000.000 .000.000.000 LENF2 .000 .840 .000.000 .000.000 LENF1 .000 .840 .000.000 .000.000 GINF1 .000 .000 .890.000 .000.000 .000 GINF2 .000 .000 .900.000 .000.000 .000 GINF3 .000 .000 .900.000 .000.000 .000 GINF4 .000 .000 .900.000 .900.000 .000 ATT1 .000 .000 .900.000 .900.000 .000 ATT2 .000 .000 .000.000 .900.000 .000 TKN1 .000 .000 .000.920 .000.000 .000	RSTR1	.810 .000 .000.000 .000.000.000
BIN2 .000 .000 .000.000 .000.700.000 LENF3 .000 .740 .000.000 .000.000 .000 LENF2 .000 .840 .000.000 .000.000 .000 LENF1 .000 .840 .000.000 .000.000 .000 GINF1 .000 .840 .000 .000.000 .000 GINF1 .000 .000 .810.000 .000.000 .000 GINF2 .000 .000 .890.000 .000.000 .000 GINF3 .000 .000 .900.000 .000.000 .000 GINF4 .000 .000 .900.000 .000.000 .000 ATT1 .000 .000 .900.000 .900.000 .000 ATT2 .000 .000 .000.000 .900.000 .000 .000 TKN1 .000 .000 .000.000 .000.000 .000 .000	RSTR2	2.850 .000 .000.000 .000.000.000
LENF3 .000 .740 .000.000 .000.000.000 LENF2 .000 .840 .000.000 .000.000.000 LENF1 .000 .840 .000.000 .000.000.000 GINF1 .000 .000 .810.000 .000.000.000 GINF2 .000 .000 .890.000 .000.000.000 GINF3 .000 .000 .900.000 .000.000.000 GINF4 .000 .000 .870.000 .000.000.000 ATT1 .000 .000 .000.000 .910.000.000 ATT2 .000 .000 .000.000 .900.000.000 TKN1 .000 .000 .000.820 .000.000.000	BIN1	.000 .000 .000.000 .000.920.000
LENF2 .000 .840 .000.000 .000.000.000 LENF1 .000 .840 .000.000 .000.000.000 GINF1 .000 .000 .810.000 .000.000.000 GINF2 .000 .000 .890.000 .000.000.000 GINF3 .000 .000 .900.000 .000.000.000 GINF4 .000 .000 .870.000 .000.000.000 ATT1 .000 .000 .000.000 .910.000.000 ATT2 .000 .000 .000.000 .900.000.000 TKN1 .000 .000 .000.820 .000.000.000 TKN2 .000 .000 .000.920 .000.000	DINIA	
LENF1 .000 .840 .000.000 .000.000.000 GINF1 .000 .000 .810.000 .000.000.000 GINF2 .000 .000 .890.000 .000.000.000 GINF3 .000 .000 .900.000 .000.000.000 GINF4 .000 .000 .870.000 .000.000.000 ATT1 .000 .000 .000.000 .910.000.000 ATT2 .000 .000 .000.000 .900.000.000 TKN1 .000 .000 .000.820 .000.000.000 TKN2 .000 .000 .000.920 .000.000.000	D	
GINF1 .000 .000 .810.000 .000.000.000 GINF2 .000 .000 .890.000 .000.000.000 GINF3 .000 .000 .900.000 .000.000.000 GINF4 .000 .000 .870.000 .000.000.000 ATT1 .000 .000 .000.000 .910.000.000 ATT2 .000 .000 .000.000 .900.000 TKN1 .000 .000 .000.920 .000.000	D	
GINF2 .000 .000 .890.000 .000.000.000 GINF3 .000 .000 .900.000 .000.000.000 GINF4 .000 .000 .870.000 .000.000.000 ATT1 .000 .000 .000.000 .910.000.000 ATT2 .000 .000 .000.000 .900.000 TKN1 .000 .000 .000.820 .000.000 TKN2 .000 .000 .000.920 .000.000	LENF3	000 .740 .000.000 .000.000.000
GINF3 .000 .000 .900.000 .000.000.000 GINF4 .000 .000 .870.000 .000.000.000 ATT1 .000 .000 .000.000 .910.000.000 ATT2 .000 .000 .000.000 .900.000.000 TKN1 .000 .000 .000.820 .000.000.000 TKN2 .000 .000 .000.920 .000.000.000	LENF3 LENF2	.000 .740 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000
GINF4 .000 .000 .870.000 .000.000.000 ATT1 .000 .000 .000.000 .910.000.000 ATT2 .000 .000 .000.000 .900.000.000 TKN1 .000 .000 .000.820 .000.000.000 TKN2 .000 .000 .000.920 .000.000.000	LENF3 LENF2 LENF1	.000 .740 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000
ATT1.000.000.000.910.000.000ATT2.000.000.000.900.000.000TKN1.000.000.000.820.000.000.000TKN2.000.000.000.920.000.000.000	LENF3 LENF2 LENF1 GINF1	.000 .740 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000
ATT2 .000 .000 .000.000 .900.000.000 TKN1 .000 .000 .000.820 .000.000.000 TKN2 .000 .000 .000.920 .000.000.000	LENF3 LENF2 LENF1 GINF1 GINF2	.000 .740 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .000 .810.000 .000.000.000 .000 .000 .890.000 .000.000.000
TKN1 .000 .000 .000.820 .000.000 .000 TKN2 .000 .000 .000.920 .000.000 .000	LENF3 LENF2 LENF1 GINF1 GINF2 GINF3	.000 .740 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .000 .810.000 .000.000.000 .000 .000 .890.000 .000.000.000 .000 .000 .900.000 .000.000
TKN2 .000 .000 .000.920 .000.000.000	LENF3 LENF2 LENF1 GINF1 GINF2 GINF3 GINF4 ATT1	.000 .740 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .000 .810.000 .000.000.000 .000 .000 .890.000 .000.000.000 .000 .000 .900.000 .000.000
	LENF3 LENF1 GINF1 GINF2 GINF3 GINF4 ATT1 ATT2	.000 .740 .000.000 .000.000 .000 .840 .000.000 .000.000 .000 .840 .000.000 .000.000 .000 .840 .000.000 .000.000 .000 .840 .000.000 .000.000 .000 .000 .810.000 .000.000 .000 .000 .890.000 .000.000 .000 .000 .900.000 .000 .000 .000 .900.000 .000 .000 .000 .910.000.000 .000 .000 .900.000 .900.000
	LENF3 LENF1 GINF1 GINF2 GINF3 GINF4 ATT1 ATT2 TKN1	.000 .740 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .000 .810.000 .000.000.000 .000 .000 .890.000 .000.000.000 .000 .000 .900.000 .000.000.000 .000 .000
	LENF3 LENF3 LENF1 GINF1 GINF2 GINF3 GINF4 ATT1 ATT2 TKN1 TKN2	.000 .740 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .840 .000.000 .000.000.000 .000 .000 .810.000 .000.000.000 .000 .000 .890.000 .000.000.000 .000 .000 .900.000 .000.000.000 .000 .000

AB										
ΔP	RS	ΕN	GI	KΤ	AB	BI	RB			
	.373	.000-	.318.	253	.000	.000	.000			
BI	.136	.050	.631.	055-	.112	.000	.000			
RB	.106-	.033	.281.	031	.024	.519	.000			
RRB2	.000	.000	.000.	000	.000	.000	.782			
RRB1	.000	.000	.000.	000	.000	.000	.956			
RSTR1	.792	.000	.000.	000	.000	.000	.000			
RSTR2	.872	.000	.000.	000	.000	.000	.000			
BIN1	.000	.000	.000.	000	.000	.927	.000			
BIN2	.000	.000	.000.	000	.000	.693	.000			
LENF3	.000	.684	.000.	000	.000	.000	.000			
LENF2	.000	.847	.000.	000	.000	.000	.000			
LENF1	.000	.836	.000.	000	.000	.000	.000			
GINF1	.000	.000	.805.	000	.000	.000	.000			
GINF2	.000	.000	.891.	000	.000	.000	.000			
GINF3	.000	.000	.904.	000	.000	.000	.000			
GINF4	.000	.000	.863.	000	.000	.000	.000			
ATT1	.000	.000	.000.	000	.934	.000	.000			
ATT2	.000	.000	.000.	000	.871	.000	.000			
TKN1	.000	.000	.000.	811	.000	.000	.000			
TKN2	.000	.000	.000.	922	.000	.000	.000			
ТКИЗ	.000	.000	.000.	723	.000	.000	.000			
Indired	t Effe	ects (Grou	ր ու	ımbe	er 1 -	Def	ault n	noc	de
	_ _ _		~ `	1/-				D		
	RS	ΕN	GI	ĸ	ΓA	BE	BI RI	D		
AB		.000								
AB BI	.000		.000	.00	00. 0	0.00	0.00	0		
	.000 035	.000	.000 .031	.00 03	00. 0 2 .00	0.00 0.00	0.00 0.00	0 0		
BI	.000 035 .052	.000 .000 .024	.000 .031 .317	.000 032 .02	0.00 2.00 505	0.00 0.00 9.00	0.00 0.00 0.00	0 0 0		
BI RB	.000 035 .052	.000 .000 .024 005	.000 .031 .317 .476	.000 032 .029 .05	0 .00 2 .00 505 102	0.00 0.00 9.00 8.45	0.00 0.00 0.00 9.00	0 0 0 0		
BI RB RRB2	.000 035 .052 .122 .141	.000 .000 .024 005 006	.000 .031 .317 .476 .552	.000 032 .029 .05	0 .00 2 .00 505 102 903	0.00 0.00 9.00 8.45 3.53	0.00 0.00 0.00 9.00 2.00	0 0 0 0		
BI RB RRB2 RRB1 RSTR1 RSTR2	.000 035 .052 .122 .141 .000 .000	.000 .000 .024 005 006 .000 .000	.000 .031 .317 .476 .552 .000 .000	.000 032 .029 .059 .059 .000	0 .00 2 .00 505 102 903 0 .00 0 .00	0.00 0.00 9.00 8.45 3.53 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00	0 0 0 0 0 0		
BI RB RRB2 RRB1 RSTR1 RSTR2 BIN1	.000 035 .052 .122 .141 .000 .000	.000 .000 .024 005 006 .000	.000 .031 .317 .476 .552 .000 .000	.000 032 .029 .059 .059 .000	0 .00 2 .00 505 102 903 0 .00 0 .00	0.00 0.00 9.00 8.45 3.53 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00	0 0 0 0 0 0		
BI RB RRB2 RRB1 RSTR1 RSTR2 BIN1 BIN2	.000 035 .052 .122 .141 .000 .000 .072 .055	.000 .000 .024 005 006 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533	.000 032 .029 .059 .059 .000 .000	0 .00 2 .00 505 102 903 0 .00 0 .00 809	0.00 9.00 8.45 3.53 0.00 0.00 7.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0		
BI RB RRB2 RRB1 RSTR1 RSTR2 BIN1 BIN2 LENF3	.000 035 .052 .122 .141 .000 .000 .072 .055 .000	.000 .024 005 006 .000 .000 .039	.000 .031 .317 .476 .552 .000 .000 .533 .406	.000 032 .029 .059 .000 .000 .000 .020	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107	0.00 9.00 8.45 3.53 0.00 0.00 7.00 4.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0		
BI RB RRB2 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF2	.000 035 .052 .122 .141 .000 .000 .072 .055 .000	.000 .024 005 006 .000 .000 .039 .030	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000	.000 032 .05 .05 .000 .000 .020 .020	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107 0 .00	0.00 9.00 8.45 3.53 0.00 0.00 7.00 4.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0		
BI RB RRB2 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF2 LENF1	.000 035 .052 .122 .141 .000 .000 .072 .055 .000 .000 .000	.000 .024 005 006 .000 .000 .039 .030 .000 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000	.000 032 .055 .000 .000 .000 .020 .000 .000	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107 0 .00 0 .00 0 .00	0.00 9.00 8.45 3.53 0.00 7.00 4.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00			
BI RB RRB2 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF2	.000 035 .052 .122 .141 .000 .000 .072 .055 .000 .000 .000	.000 .024 005 006 .000 .000 .039 .030 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000	.000 032 .055 .000 .000 .000 .020 .000 .000	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107 0 .00 0 .00 0 .00	0.00 9.00 8.45 3.53 0.00 7.00 4.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00			
BI RB RRB2 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF2 LENF1	.000 035 .052 .122 .141 .000 .000 .072 .055 .000 .000 .000 .000	.000 .024 005 006 .000 .000 .039 .030 .000 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000 .000	.000 032 .025 .055 .000 .000 .000 .000 .000 .00	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107 0 .00 0 .00 0 .00 0 .00	0.00 0.00 9.00 8.45 3.53 0.00 0.00 7.00 4.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00			
BI RB RRB2 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF3 LENF1 GINF1	.000 035 .052 .122 .141 .000 .000 .000 .000 .000 .000 .000	.000 .024 005 006 .000 .000 .039 .030 .030 .000 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000 .000 .000	.000 03: .029 .055 .000 .000 .000 .000 .000 .000	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107 0 .00 0 .00 0 .00 0 .00 0 .00	0.00 0.00 9.00 8.45 3.53 0.00 0.00 7.00 4.00 0.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00			
BI RB RRB2 RRB1 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF3 LENF3 GINF1 GINF1	.000 035 .052 .122 .141 .000 .000 .072 .055 .000 .000 .000 .000 .000 .000 .00	.000 .024 005 006 .000 .000 .039 .030 .030 .000 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000 .000 .000 .000 .000	.000 032 .025 .055 .000 .000 .000 .000 .000 .00	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107 0 .00 0 .00	0.00 0.00 9.00 8.45 3.53 0.00 0.00 7.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00			
BI RB RRB2 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF3 LENF1 GINF1 GINF2 GINF3	.000 035 .052 .122 .141 .000 .000 .072 .055 .000 .000 .000 .000 .000 .000 .00	.000 .024 005 006 .000 .000 .039 .030 .030 .000 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000 .000 .000 .000 .000	.000 032 .025 .055 .000 .000 .000 .000 .000 .00	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107 0 .00 0 .00	0.00 0.00 9.00 8.45 3.53 0.00 0.00 7.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00			
BI RB RRB2 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF3 LENF1 GINF1 GINF3 GINF4	.000 035 .052 .122 .141 .000 .000 .000 .000 .000 .000 .000	.000 .024 005 006 .000 .000 .039 .030 .030 .000 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000 .000 .000 .000 .000	.000 03: .029 .055 .000 .000 .000 .000 .000 .000 .00	0 .00 2 .00 505 102 903 0 .00 0 .00 809 107 0 .00 0	0.00 0.00 9.00 8.45 3.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00 0.00 0.00 0.00			
BI RB RRB2 RRB1 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF3 LENF1 GINF1 GINF2 GINF3 GINF4 ATT1	.000 035 .052 .122 .141 .000 .000 .072 .055 .000 .000 .000 .000 .000 .000 .00	.000 .024 .005 .006 .000 .000 .039 .030 .000 .000 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000 .000 .000 .000 .000	.000 03 .029 .05 .000 .000 .000 .000 .000 .000 .000	0 .00 2 .00 505 102 903 0 .00 0	0.00 0.00 9.00 8.45 3.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00			
BI RB RRB2 RRB1 RSTR1 RSTR2 BIN1 BIN2 LENF3 LENF3 LENF1 GINF2 GINF3 GINF4 ATT1 ATT2	.000 035 .052 .122 .141 .000 .000 .072 .055 .000 .000 .000 .000 .000 .000 .00	.000 .024 .005 .006 .000 .000 .039 .030 .030 .000 .000 .000	.000 .031 .317 .476 .552 .000 .000 .533 .406 .000 .000 .000 .000 .000 .000 .000	.000 03 .02 .05 .05 .000 .000 .000 .000 .000 .0	0 .00 2 .00 5 .05 1 .02 9 .03 0 .00 0 .00 8 .09 1 .07 0 .00 0 .00	0.00 0.00 9.00 8.45 3.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 9.00 2.00 0.00			

Standardized Indirect Effects (Group number 1 - Default model)

	RS EN GI KT AB BI RB
AB	.000.000.000.000.000.000.000
BI	042 .000 .036028 .000.000.000
RB	.058 .026 .339 .020058.000.000
RRB2	.128005 .485 .040027.406.000
RRB1	.157007 .593 .049033.496.000
RSTR1	.000.000.000. 000. 000. 000. 000.
RSTR2	.000.000.000. 000. 000. 000. 000.
BIN1	.087 .046 .618 .025104.000.000
BIN2	.065 .035 .462 .019078.000.000
LENF3	.000.000.000. 000. 000. 000. 000.
LENF2	.000.000.000. 000. 000. 000. 000.
LENF1	.000.000.000. 000. 000. 000. 000.
GINF1	.000.000.000. 000. 000. 000. 000.
GINF2	.000.000.000. 000. 000. 000. 000.
GINF3	.000.000.000. 000. 000. 000. 000.
GINF4	.000.000.000. 000. 000. 000. 000.
ATT1	.349 .000297 .237 .000.000.000
ATT2	.325 .000277 .221 .000.000.000
TKN1	.000.000.000. 000. 000. 000. 000.
TKN2	.000.000.000.000.000.000.000
TKN3	.000.000.000.000.000.000.000

Modification Indices (Group number 1 - Default model) <u>Covariances: (Group number 1 -</u> Default model)

C0va	anances	: (Group nu	
			Change
e18	<> KT	17.084	.040
e18	<> Z1	5.887	.025
e17	<> KT	10.897	029
e15	<> GI	6.981	.044
e15	<> Z2	6.035	.031
		5.777	037
e16	<> Z2	5.042	026
e12	<> KT	6.903	036
e12	<> Z3	4.043	025
e12	<> e18		022
e11	<> e15		.022
e10		5.125	.025
e10	<> Z3	4.955	.023
e6	<> KT	8.532	.029
e6	<> e18		.030
e6	<> e17		022
e6	<> e14		.023
e7	<> RS		.032
e7	<> GI	5.514	024
e7	<> e18		.013
e7	<> e15		.028
e7	<> e14		019
e7	<> e11		015
e8	<> RS		042
e8	<> EN	4.240	.024
e8	<> Z1	8.791	028
e8	<> e18	3 15.363	026
e8	<> e12	2 6.878	.024
e8	<> e7	9.151	016
e9	<> GI	5.296	.029
e4	<> GI	14.943	.043
e4	<> e18	8.266	018
e4	<> e17	6.926	.015
e4	<> e11	7.936	021
e4	<> e8	6.259	.015
e5	<> GI	18.129	051
e5	<> e18	24.219	.034
e5	<> e17	18.484	027
e5	<> e14		.015
e5	<> e6	7.302	.019
e5	<> e8	24.321	032
e1	<> RS	4.931	.027
e1	<> e18		.026
e1	<> e17		013
e1	<> e12		032
e1	<> e6	10.698	.032
e1	<> e8	12.064	020
61	<> C0	12.004	020

			-
e1	<> e4	6.325	014
e1	<> e5	5 16.528	.025
e2	<> R	S 7.232	029
e2	<> Z2	2 5.791	017
e2	<> e8	3 11.121	.017
e3	<> Z2	2 9.005	.028
e3	<> e4	8.331	.019
e3	<> e5	5 8.540	020

Variances: (Group number 1 - Default model) Regression Weights: (Group number 1 - Default model)

			Par Change
RRB2	< RS	5.529	.024
RRB2	< EN	8.544	.031
RRB2	< KT	21.788	.063
RRB2	< AB	22.414	.053
RRB2	< LENF2	8.168	.028
RRB2	< LENF1	12.243	.034
RRB2	< GINF1	5.918	.024
RRB2	< GINF3	4.619	021
RRB2	< ATT1	12.778	.039
RRB2	< ATT2	37.026	.063
RRB2	< TKN1	34.642	.075
RRB2	< TKN2	15.422	.051
RRB2	< TKN3	9.058	.035
RRB1	< EN	5.427	023
RRB1	< KT	13.837	046
RRB1	< AB	14.235	039
RRB1	< LENF2		023
RRB1	< LENF1	4.151	018
RRB1	< ATT1	7.680	028
RRB1	< ATT2	24.205	047
RRB1	< TKN1	17.564	049
RRB1	< TKN2	12.234	042
RSTR1	< GI	10.299	.045
RSTR1	< BI	15.816	.065
RSTR1	< RB	9.587	.046
RSTR1	< RRB2	7.292	.037
RSTR1	< RRB1	8.184	.041
	< BIN1	15.091	.061
	< BIN2	8.113	.044
RSTR1	< LENF2		.034
RSTR1	< GINF1	7.641	.037
	< GINF2	17.196	.056
	< GINF3		.029
	< GINF4	4.442	.028
RSTR2		10.606	042
RSTR2		14.835	059
_	< RB	9.330	042
RSTR2	< RRB2	7.788	036

RSTR2 RRB1 7.739 038 RSTR2 BIN1 14.137 055 RSTR2 BIN2 6.770 037 RSTR2 LENF3 5.159 026 RSTR2 LENF3 5.159 027 RSTR2 GINF1 7.585 034 RSTR2 GINF2 11.594 043 RSTR2 GINF3 7.369 034 RSTR2 GINF4 4.954 028 LENF3 RS 6.596 038 LENF3 RSTR2 6.194 035 LENF3 RSTR2 6.194 035 LENF3 RSTR2 6.194 036 LENF3 RSTR2 6.194 036 LENF3 TKN2 6.475 047 LENF3 TKN3 4.644 036 LENF1 ATT1
RSTR2 <
RSTR2 <
RSTR2 <
RSTR2 < GINF1
RSTR2 < GINF2
RSTR2 < GINF3
RSTR2 GINF4 4.954 028 LENF3 RS 6.596 038 LENF3 RS 6.596 038 LENF3 RRB2 6.354 036 LENF3 RSTR2 6.194 035 LENF3 RSTR2 6.475 047 LENF3 TKN2 6.475 047 LENF3 TKN2 6.475 047 LENF3 TKN3 4.644 036 LENF1 <
LENF3 RS 6.596 038 LENF3 KT 9.944 061 LENF3 RRB2 6.354 036 LENF3 RSTR2 6.194 035 LENF3 RSTR2 6.475 047 LENF3 TKN1 19.320 079 LENF3 <
LENF3 <
LENF3 <
LENF3 <
LENF3<
LENF3 <
LENF3 <
LENF2 < ATT1
LENF1<KT6.301.041LENF1<
LENF1<AB6.172.033LENF1<
LENF1 <
LENF1<ATT15.586.031LENF1<
LENF1<ATT24.278.025LENF1<
LENF1 <
LENF1 <
GINF1<EN5.689.025GINF1<
GINF1<KT12.314.048GINF1<
GINF1<AB5.677.027GINF1<
GINF1<RRB220.193.046GINF1<
GINF1<BIN227.267.060GINF1<
GINF1<LENF25.062.022GINF1<
GINF1 < GINF3 4.114 .020 GINF1 < ATT2 9.752 .033
GINF1 < ATT2 9.752 .033
GINF1 < TKN1 21.129 .059
GINF1 < TKN2 8.068 .037
GINF1 < TKN3 6.288 .030
GINF2 < EN 5.628021
GINF2 < GI 5.600021
GINF2 < RSTR1 7.669 .022
GINF2 < BIN2 5.911023
GINF2 < LENF2 7.351023
GINF2 < GINF3 10.246027
GINF3 < RS 10.647031
GINF3 < AB 11.593035
GINF3 < RRB2 12.406033
GINF3 < RSTR1 11.175029
GINF3 < RSTR2 6.176023
GINF3 < ATT1 6.111025
GINF3 < ATT2 25.062048
GINF3 < TKN1 8.972035

GINF4	<	GINF2	4.119 .021
GINF4	<	GINF3	4.065 .021
ATT1	<	RS	5.842023
ATT1	<	GI	14.610 .036
ATT1	<	KT	7.039033
ATT1	<	AB	8.072027
ATT1	<		5.702 .026
ATT1	<	RB	4.177 .020
ATT1	•	RRB1	5.269 .022
ATT1		RSTR1	4.633018
ATT1		RSTR2	4.557019
ATT1		BIN1	5.687 .025
ATT1		LENF2	4.672019
ATT1		GINF1	4.352 .019
ATT1		GINF2	10.503 .029
ATT1		GINF3	17.717 .038
ATT1			11.438 .030
		GINF4	
ATT1		ATT2	6.190023
ATT1		TKN1	14.548044
ATT1		TKN2	6.376030
ATT2	<	-	7.020 .027
ATT2	<	-	17.541042
ATT2	<		8.452 .039
ATT2	<		10.663 .035
ATT2	<		6.405030
ATT2	<		4.417023
ATT2		RRB1	6.797027
ATT2		RSTR1	4.917 .020
ATT2	<	RSTR2	5.827 .023
ATT2	<	BIN1	6.235028
ATT2	-	BIN2	4.214 .023
ATT2	<	GINF2	10.282031
ATT2	<	GINF3	28.962052
ATT2	<	GINF4	10.764032
ATT2	<	ATT1	8.814 .032
ATT2	<	TKN1	23.809 .061
ATT2	<	TKN2	5.999 .031
TKN1	<	RS	8.277 .026
TKN1	<	AB	7.862 .028
TKN1	<	RRB2	13.385 .032
TKN1	<	RSTR1	4.870 .018
TKN1	<	RSTR2	6.457 .022
TKN1		LENF3	5.419019
TKN1		GINF1	4.415 .018
TKN1		ATT2	17.095 .038
TKN2	<		10.052026
TKN2	<		4.016017
TKN2	<		7.549026
TKN2	<		11.390029
TKN2		RRB2	9.461024
TIMZ	<	ΝΛDΖ	9.401024

TKN2	<	RRB1	10.589	027
TKN2	<	RSTR2	9.648	024
TKN2	<	BIN1	6.843	023
TKN2	<	BIN2	6.512	022
TKN2	<	GINF1	4.343	016
TKN3	<	GI	4.153	.021
TKN3	<	BI	12.439	.043
TKN3	<	RB	10.315	.035
TKN3	<	RRB2	4.799	.022
TKN3	<	RRB1	10.244	.034
TKN3	<	BIN1	11.889	.040
TKN3	<	BIN2	6.373	.029

Minimization History (Default model)

				1017					
Iteration	Negativ eigenvalue	ve es C	Condition #	Smalle: igenvalu	Diam	eter		FNTries	s Rati
Oe	e 3	35		47	39999.	0002	9599.84	8 (09999.00
16	e* 2	25		34	5 1.	2451	8522.19	9 18	3 1.01
20	e ć	19		26	7.	4441	4875.60)7 5	5.84
36	э*	7		22	.1	819	7777.59	8 5	5.92
46	Э	1		00	7.	899	2270.79)7 5	5.77
56	Э	01	16324.021		-	408	689.56	65 E	.88
6	Э	0	652.745			255	675.16	69 6	.00
76	Э	0	545.563			302	462.98	37 1	l 1.03
8	Э	0	1493.086		-	091	445.79)7 1	l 1.09
96	Э	0	1740.065			083	444.61	0 1	I 1.10
10	Э	0	2478.220		-	019	444.51	0 1	l 1.06
11	Э	0	2562.895			004	444.50)9 1	I 1.01
126	Э	0	2524.497		-	000	444.50)9 1	I 1.00
Model F CMIN	it Summary	1							
Madal		NIE							

Model	NPAR	(CMIN	DF	PC	MIN/DF
Default model	66	6 444	1.5091	105.0	000	4.233
Saturated model	171		.000	0		
Independence model	18	37162	2.5171	153.0	000	242.892
RMR, GFI	-					
Model	RMR	GFIA	GFIP	GFI		
Default model	.026	.984	.973.	604		
Saturated model	.0001	.000				
Independence model	.370	.348	.272 .	312		
Baseline Comparise	ons					_
Model	NF	I RFI	IFI	TL	CF	-1
	Delta1	rho1[Delta2	rho2	2 01	'
Default model	.988	3.983	.991	.987	'.99	1
Saturated model	1.000)	1.000		1.00	0
Independence model	.000	000.0	.000	.000	.00	0
Parsimony-Adjustee	d Mea	sures				
Model	PRAT	IOPN	FIPCF	-1		
Default model	.6	86 .67	68. 87	0		
Saturated model	.0	00.00	00.00	0		
Independence model	1.0	00.00	00.00	0		

NCP				
Model	NCP	LO 90	HI 90	
Default model	339.509	278.111	408.461	
Saturated model	.000	.000	.000	
Independence model	37009.5173	6379.1403	37646.177	
FMIN				
Model	FMIN I	F0 LO 90	HI 90	
Default model	.139 .10	06 .087	.128	
Saturated model	.000 .00	000. 00	.000	
Independence model	11.65011.60	0211.4041	1.801	
RMSEA	1		i	
	RMSEALO		CLOSE	
Default model	.032 .0	29 .035	1.000	
Independence model	.275 .2	73 .278	.000	
AIC	1			
Model	AIC	BCC	BIC	CAIC
Default model	576.509	577.300	977.003	1043.003
Saturated model	342.000			1550.643
Independence model	37198.5173	7198.7323	37307.742	37325.742
ECVI				
Model	ECVI LO 9			
Default model	.181 .10			
Saturated model	.107 .10	07.107	.108	
Independence model	<u>11.661</u> 11.40	6311.8611	1.661	
HOELTER				
	HOELTERH			
Model	.05	.01		
Model Default model	.05 933	.01 1017		
Model Default model Independence model	.05 933 16	.01		
Model Default model Independence model Execution time sum	.05 933 16	.01 1017		
Model Default model Independence model Execution time sum Minimization: .047	.05 933 16	.01 1017		
Model Default model Independence model Execution time sum	.05 933 16	.01 1017		

Total:

1.138

Research Report 2015

ATRANS

Copyright © Asian Transportation Research Society